Random walks on co-compact fuchsian groups

Sébastien Gouëzel; Steven P. Lalley

Annales scientifiques de l'École Normale Supérieure (2013)

  • Volume: 46, Issue: 1, page 131-175
  • ISSN: 0012-9593

Abstract

top
It is proved that the Green’s function of a symmetric finite range random walk on a co-compact Fuchsian group decays exponentially in distance at the radius of convergence R . It is also shown that Ancona’s inequalities extend to  R , and therefore that the Martin boundary for  R -potentials coincides with the natural geometric boundary S 1 , and that the Martin kernel is uniformly Hölder continuous. Finally, this implies a local limit theorem for the transition probabilities: in the aperiodic case, p n ( x , y ) C x , y R - n n - 3 / 2 .

How to cite

top

Gouëzel, Sébastien, and Lalley, Steven P.. "Random walks on co-compact fuchsian groups." Annales scientifiques de l'École Normale Supérieure 46.1 (2013): 131-175. <http://eudml.org/doc/272109>.

@article{Gouëzel2013,
abstract = {It is proved that the Green’s function of a symmetric finite range random walk on a co-compact Fuchsian group decays exponentially in distance at the radius of convergence $R$. It is also shown that Ancona’s inequalities extend to $R$, and therefore that the Martin boundary for $R$-potentials coincides with the natural geometric boundary $S^\{1\}$, and that the Martin kernel is uniformly Hölder continuous. Finally, this implies a local limit theorem for the transition probabilities: in the aperiodic case, $p^n(x,y)\sim C_\{x,y\}R^\{-n\}n^\{-3/2\}$.},
author = {Gouëzel, Sébastien, Lalley, Steven P.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {hyperbolic group; surface group; random walk; Green’s function; Gromov boundary; Martin boundary; Ruelle operator theorem; Gibbs state; local limit theorem},
language = {eng},
number = {1},
pages = {131-175},
publisher = {Société mathématique de France},
title = {Random walks on co-compact fuchsian groups},
url = {http://eudml.org/doc/272109},
volume = {46},
year = {2013},
}

TY - JOUR
AU - Gouëzel, Sébastien
AU - Lalley, Steven P.
TI - Random walks on co-compact fuchsian groups
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2013
PB - Société mathématique de France
VL - 46
IS - 1
SP - 131
EP - 175
AB - It is proved that the Green’s function of a symmetric finite range random walk on a co-compact Fuchsian group decays exponentially in distance at the radius of convergence $R$. It is also shown that Ancona’s inequalities extend to $R$, and therefore that the Martin boundary for $R$-potentials coincides with the natural geometric boundary $S^{1}$, and that the Martin kernel is uniformly Hölder continuous. Finally, this implies a local limit theorem for the transition probabilities: in the aperiodic case, $p^n(x,y)\sim C_{x,y}R^{-n}n^{-3/2}$.
LA - eng
KW - hyperbolic group; surface group; random walk; Green’s function; Gromov boundary; Martin boundary; Ruelle operator theorem; Gibbs state; local limit theorem
UR - http://eudml.org/doc/272109
ER -

References

top
  1. [1] A. Ancona, Negatively curved manifolds, elliptic operators, and the Martin boundary, Ann. of Math.125 (1987), 495–536. Zbl0652.31008MR890161
  2. [2] A. Ancona, Positive harmonic functions and hyperbolicity, in Potential theory—surveys and problems (Prague, 1987), Lecture Notes in Math. 1344, Springer, 1988, 1–23. MR973878
  3. [3] M. T. Anderson & R. Schoen, Positive harmonic functions on complete manifolds of negative curvature, Ann. of Math.121 (1985), 429–461. Zbl0587.53045MR794369
  4. [4] K. B. Athreya & P. E. Ney, Branching processes, Grundl. der math. Wiss. 196, Springer, 1972. Zbl0259.60002MR373040
  5. [5] V. Baladi, Positive transfer operators and decay of correlations, Advanced Series in Nonlinear Dynamics 16, World Scientific Publishing Co. Inc., 2000. Zbl1012.37015MR1793194
  6. [6] N. H. Bingham, C. M. Goldie & J. L. Teugels, Regular variation, Encyclopedia of Math. and its Appl. 27, Cambridge Univ. Press, 1987. Zbl0617.26001MR898871
  7. [7] S. Blachère & S. Brofferio, Internal diffusion limited aggregation on discrete groups having exponential growth, Probab. Theory Related Fields137 (2007), 323–343. Zbl1106.60078MR2278460
  8. [8] S. Blachère, P. Haïssinsky & P. Mathieu, Asymptotic entropy and Green speed for random walks on countable groups, Ann. Probab.36 (2008), 1134–1152. Zbl1146.60008MR2408585
  9. [9] S. Blachère, P. Haïssinsky & P. Mathieu, Harmonic measures versus quasiconformal measures for hyperbolic groups, Ann. Sci. Éc. Norm. Supér. 44 (2011), 683–721. Zbl1243.60005MR2919980
  10. [10] P. Bougerol, Théorème central limite local sur certains groupes de Lie, Ann. Sci. École Norm. Sup.14 (1981), 403–432. Zbl0488.60013MR654204
  11. [11] R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Math. 470, Springer, 1975. Zbl0308.28010MR442989
  12. [12] J. W. Cannon, The combinatorial structure of cocompact discrete hyperbolic groups, Geom. Dedicata16 (1984), 123–148. Zbl0606.57003MR758901
  13. [13] J. W. Cannon, Almost convex groups, Geom. Dedicata22 (1987), 197–210. Zbl0607.20020MR877210
  14. [14] J. W. Cannon, The theory of negatively curved spaces and groups, in Ergodic theory, symbolic dynamics, and hyperbolic spaces (Trieste, 1989), Oxford Sci. Publ., Oxford Univ. Press, 1991, 315–369. Zbl0764.57002MR1130181
  15. [15] D. I. Cartwright, Singularities of the Green function of a random walk on a discrete group, Monatsh. Math.113 (1992), 183–188. Zbl0764.60065MR1163299
  16. [16] I. Chatterji & K. Ruane, Some geometric groups with rapid decay, Geom. Funct. Anal.15 (2005), 311–339. Zbl1134.22005MR2153902
  17. [17] W. Feller, An introduction to probability theory and its applications. Vol. II., Second edition, John Wiley & Sons Inc., 1971. Zbl0219.60003MR270403
  18. [18] P. Gerl & W. Woess, Local limits and harmonic functions for nonisotropic random walks on free groups, Probab. Theory Relat. Fields71 (1986), 341–355. Zbl0562.60011MR824708
  19. [19] É. Ghys & P. de la Harpe, Espaces métriques hyperboliques, in Sur les groupes hyperboliques d’après Mikhael Gromov (Bern, 1988), Progr. Math. 83, Birkhäuser, 1990, 27–45. MR1086648
  20. [20] M. Gromov, Hyperbolic groups, in Essays in group theory, Math. Sci. Res. Inst. Publ. 8, Springer, 1987, 75–263. MR919829
  21. [21] U. Hamenstädt, Harmonic measures, Hausdorff measures and positive eigenfunctions, J. Differential Geom. 44 (1996), 1–31. Zbl0881.58070MR1420348
  22. [22] M. Izumi, S. Neshveyev & R. Okayasu, The ratio set of the harmonic measure of a random walk on a hyperbolic group, Israel J. Math.163 (2008), 285–316. Zbl1166.37012MR2391133
  23. [23] I. Kapovich & N. Benakli, Boundaries of hyperbolic groups, in Combinatorial and geometric group theory (New York, 2000/Hoboken, NJ, 2001), Contemp. Math. 296, Amer. Math. Soc., 2002, 39–93. Zbl1044.20028MR1921706
  24. [24] S. Katok, Fuchsian groups, Chicago Lectures in Mathematics, University of Chicago Press, 1992. Zbl0753.30001MR1177168
  25. [25] H. Kesten, Full Banach mean values on countable groups, Math. Scand.7 (1959), 146–156. Zbl0092.26704MR112053
  26. [26] S. P. Lalley, Renewal theorems in symbolic dynamics, with applications to geodesic flows, non-Euclidean tessellations and their fractal limits, Acta Math.163 (1989), 1–55. Zbl0701.58021MR1007619
  27. [27] S. P. Lalley, Finite range random walk on free groups and homogeneous trees, Ann. Probab.21 (1993), 2087–2130. Zbl0804.60006MR1245302
  28. [28] S. P. Lalley, Random walks on regular languages and algebraic systems of generating functions, in Algebraic methods in statistics and probability (Notre Dame, IN, 2000), Contemp. Math. 287, Amer. Math. Soc., 2001, 201–230. Zbl1016.60050MR1873677
  29. [29] F. Ledrappier, A renewal theorem for the distance in negative curvature, in Stochastic analysis (Ithaca, NY, 1993), Proc. Sympos. Pure Math. 57, Amer. Math. Soc., 1995, 351–360. Zbl0842.60080MR1335481
  30. [30] F. Ledrappier, Some asymptotic properties of random walks on free groups, in Topics in probability and Lie groups: boundary theory, CRM Proc. Lecture Notes 28, Amer. Math. Soc., 2001, 117–152. Zbl0994.60073MR1832436
  31. [31] T. Nagnibeda & W. Woess, Random walks on trees with finitely many cone types, J. Theoret. Probab.15 (2002), 383–422. Zbl1008.60061MR1898814
  32. [32] W. Parry & M. Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque 187-188 (1990). Zbl0726.58003MR1085356
  33. [33] M. Picardello & W. Woess, Examples of stable Martin boundaries of Markov chains, in Potential theory (Nagoya, 1990), de Gruyter, 1992, 261–270. Zbl0758.60076MR1167242
  34. [34] C. Series, The infinite word problem and limit sets in Fuchsian groups, Ergodic Theory Dynam. Systems1 (1981), 337–360. Zbl0483.30029MR662473
  35. [35] C. Series, Martin boundaries of random walks on Fuchsian groups, Israel J. Math.44 (1983), 221–242. Zbl0517.60077MR693661
  36. [36] H. S. Wall, Analytic theory of continued fractions, D. Van Nostrand Company, Inc., New York, N. Y., 1948. Zbl0035.03601MR25596
  37. [37] W. Woess, A local limit theorem for random walks on certain discrete groups, in Probability measures on groups (Oberwolfach, 1981), Lecture Notes in Math. 928, Springer, 1982, 467–477. MR669080
  38. [38] W. Woess, Nearest neighbour random walks on free products of discrete groups, Boll. Un. Mat. Ital. B5 (1986), 961–982. Zbl0627.60012MR871708
  39. [39] W. Woess, Random walks on infinite graphs and groups, Cambridge Tracts in Mathematics 138, Cambridge Univ. Press, 2000. Zbl0951.60002MR1743100
  40. [40] W. Woess, Context-free pairs of groups II—cuts, tree sets, and random walks, Discrete Math.312 (2012), 157–173. MR2852518

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.