Random walks on co-compact fuchsian groups
Sébastien Gouëzel; Steven P. Lalley
Annales scientifiques de l'École Normale Supérieure (2013)
- Volume: 46, Issue: 1, page 131-175
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topGouëzel, Sébastien, and Lalley, Steven P.. "Random walks on co-compact fuchsian groups." Annales scientifiques de l'École Normale Supérieure 46.1 (2013): 131-175. <http://eudml.org/doc/272109>.
@article{Gouëzel2013,
abstract = {It is proved that the Green’s function of a symmetric finite range random walk on a co-compact Fuchsian group decays exponentially in distance at the radius of convergence $R$. It is also shown that Ancona’s inequalities extend to $R$, and therefore that the Martin boundary for $R$-potentials coincides with the natural geometric boundary $S^\{1\}$, and that the Martin kernel is uniformly Hölder continuous. Finally, this implies a local limit theorem for the transition probabilities: in the aperiodic case, $p^n(x,y)\sim C_\{x,y\}R^\{-n\}n^\{-3/2\}$.},
author = {Gouëzel, Sébastien, Lalley, Steven P.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {hyperbolic group; surface group; random walk; Green’s function; Gromov boundary; Martin boundary; Ruelle operator theorem; Gibbs state; local limit theorem},
language = {eng},
number = {1},
pages = {131-175},
publisher = {Société mathématique de France},
title = {Random walks on co-compact fuchsian groups},
url = {http://eudml.org/doc/272109},
volume = {46},
year = {2013},
}
TY - JOUR
AU - Gouëzel, Sébastien
AU - Lalley, Steven P.
TI - Random walks on co-compact fuchsian groups
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2013
PB - Société mathématique de France
VL - 46
IS - 1
SP - 131
EP - 175
AB - It is proved that the Green’s function of a symmetric finite range random walk on a co-compact Fuchsian group decays exponentially in distance at the radius of convergence $R$. It is also shown that Ancona’s inequalities extend to $R$, and therefore that the Martin boundary for $R$-potentials coincides with the natural geometric boundary $S^{1}$, and that the Martin kernel is uniformly Hölder continuous. Finally, this implies a local limit theorem for the transition probabilities: in the aperiodic case, $p^n(x,y)\sim C_{x,y}R^{-n}n^{-3/2}$.
LA - eng
KW - hyperbolic group; surface group; random walk; Green’s function; Gromov boundary; Martin boundary; Ruelle operator theorem; Gibbs state; local limit theorem
UR - http://eudml.org/doc/272109
ER -
References
top- [1] A. Ancona, Negatively curved manifolds, elliptic operators, and the Martin boundary, Ann. of Math.125 (1987), 495–536. Zbl0652.31008MR890161
- [2] A. Ancona, Positive harmonic functions and hyperbolicity, in Potential theory—surveys and problems (Prague, 1987), Lecture Notes in Math. 1344, Springer, 1988, 1–23. MR973878
- [3] M. T. Anderson & R. Schoen, Positive harmonic functions on complete manifolds of negative curvature, Ann. of Math.121 (1985), 429–461. Zbl0587.53045MR794369
- [4] K. B. Athreya & P. E. Ney, Branching processes, Grundl. der math. Wiss. 196, Springer, 1972. Zbl0259.60002MR373040
- [5] V. Baladi, Positive transfer operators and decay of correlations, Advanced Series in Nonlinear Dynamics 16, World Scientific Publishing Co. Inc., 2000. Zbl1012.37015MR1793194
- [6] N. H. Bingham, C. M. Goldie & J. L. Teugels, Regular variation, Encyclopedia of Math. and its Appl. 27, Cambridge Univ. Press, 1987. Zbl0617.26001MR898871
- [7] S. Blachère & S. Brofferio, Internal diffusion limited aggregation on discrete groups having exponential growth, Probab. Theory Related Fields137 (2007), 323–343. Zbl1106.60078MR2278460
- [8] S. Blachère, P. Haïssinsky & P. Mathieu, Asymptotic entropy and Green speed for random walks on countable groups, Ann. Probab.36 (2008), 1134–1152. Zbl1146.60008MR2408585
- [9] S. Blachère, P. Haïssinsky & P. Mathieu, Harmonic measures versus quasiconformal measures for hyperbolic groups, Ann. Sci. Éc. Norm. Supér. 44 (2011), 683–721. Zbl1243.60005MR2919980
- [10] P. Bougerol, Théorème central limite local sur certains groupes de Lie, Ann. Sci. École Norm. Sup.14 (1981), 403–432. Zbl0488.60013MR654204
- [11] R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Math. 470, Springer, 1975. Zbl0308.28010MR442989
- [12] J. W. Cannon, The combinatorial structure of cocompact discrete hyperbolic groups, Geom. Dedicata16 (1984), 123–148. Zbl0606.57003MR758901
- [13] J. W. Cannon, Almost convex groups, Geom. Dedicata22 (1987), 197–210. Zbl0607.20020MR877210
- [14] J. W. Cannon, The theory of negatively curved spaces and groups, in Ergodic theory, symbolic dynamics, and hyperbolic spaces (Trieste, 1989), Oxford Sci. Publ., Oxford Univ. Press, 1991, 315–369. Zbl0764.57002MR1130181
- [15] D. I. Cartwright, Singularities of the Green function of a random walk on a discrete group, Monatsh. Math.113 (1992), 183–188. Zbl0764.60065MR1163299
- [16] I. Chatterji & K. Ruane, Some geometric groups with rapid decay, Geom. Funct. Anal.15 (2005), 311–339. Zbl1134.22005MR2153902
- [17] W. Feller, An introduction to probability theory and its applications. Vol. II., Second edition, John Wiley & Sons Inc., 1971. Zbl0219.60003MR270403
- [18] P. Gerl & W. Woess, Local limits and harmonic functions for nonisotropic random walks on free groups, Probab. Theory Relat. Fields71 (1986), 341–355. Zbl0562.60011MR824708
- [19] É. Ghys & P. de la Harpe, Espaces métriques hyperboliques, in Sur les groupes hyperboliques d’après Mikhael Gromov (Bern, 1988), Progr. Math. 83, Birkhäuser, 1990, 27–45. MR1086648
- [20] M. Gromov, Hyperbolic groups, in Essays in group theory, Math. Sci. Res. Inst. Publ. 8, Springer, 1987, 75–263. MR919829
- [21] U. Hamenstädt, Harmonic measures, Hausdorff measures and positive eigenfunctions, J. Differential Geom. 44 (1996), 1–31. Zbl0881.58070MR1420348
- [22] M. Izumi, S. Neshveyev & R. Okayasu, The ratio set of the harmonic measure of a random walk on a hyperbolic group, Israel J. Math.163 (2008), 285–316. Zbl1166.37012MR2391133
- [23] I. Kapovich & N. Benakli, Boundaries of hyperbolic groups, in Combinatorial and geometric group theory (New York, 2000/Hoboken, NJ, 2001), Contemp. Math. 296, Amer. Math. Soc., 2002, 39–93. Zbl1044.20028MR1921706
- [24] S. Katok, Fuchsian groups, Chicago Lectures in Mathematics, University of Chicago Press, 1992. Zbl0753.30001MR1177168
- [25] H. Kesten, Full Banach mean values on countable groups, Math. Scand.7 (1959), 146–156. Zbl0092.26704MR112053
- [26] S. P. Lalley, Renewal theorems in symbolic dynamics, with applications to geodesic flows, non-Euclidean tessellations and their fractal limits, Acta Math.163 (1989), 1–55. Zbl0701.58021MR1007619
- [27] S. P. Lalley, Finite range random walk on free groups and homogeneous trees, Ann. Probab.21 (1993), 2087–2130. Zbl0804.60006MR1245302
- [28] S. P. Lalley, Random walks on regular languages and algebraic systems of generating functions, in Algebraic methods in statistics and probability (Notre Dame, IN, 2000), Contemp. Math. 287, Amer. Math. Soc., 2001, 201–230. Zbl1016.60050MR1873677
- [29] F. Ledrappier, A renewal theorem for the distance in negative curvature, in Stochastic analysis (Ithaca, NY, 1993), Proc. Sympos. Pure Math. 57, Amer. Math. Soc., 1995, 351–360. Zbl0842.60080MR1335481
- [30] F. Ledrappier, Some asymptotic properties of random walks on free groups, in Topics in probability and Lie groups: boundary theory, CRM Proc. Lecture Notes 28, Amer. Math. Soc., 2001, 117–152. Zbl0994.60073MR1832436
- [31] T. Nagnibeda & W. Woess, Random walks on trees with finitely many cone types, J. Theoret. Probab.15 (2002), 383–422. Zbl1008.60061MR1898814
- [32] W. Parry & M. Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque 187-188 (1990). Zbl0726.58003MR1085356
- [33] M. Picardello & W. Woess, Examples of stable Martin boundaries of Markov chains, in Potential theory (Nagoya, 1990), de Gruyter, 1992, 261–270. Zbl0758.60076MR1167242
- [34] C. Series, The infinite word problem and limit sets in Fuchsian groups, Ergodic Theory Dynam. Systems1 (1981), 337–360. Zbl0483.30029MR662473
- [35] C. Series, Martin boundaries of random walks on Fuchsian groups, Israel J. Math.44 (1983), 221–242. Zbl0517.60077MR693661
- [36] H. S. Wall, Analytic theory of continued fractions, D. Van Nostrand Company, Inc., New York, N. Y., 1948. Zbl0035.03601MR25596
- [37] W. Woess, A local limit theorem for random walks on certain discrete groups, in Probability measures on groups (Oberwolfach, 1981), Lecture Notes in Math. 928, Springer, 1982, 467–477. MR669080
- [38] W. Woess, Nearest neighbour random walks on free products of discrete groups, Boll. Un. Mat. Ital. B5 (1986), 961–982. Zbl0627.60012MR871708
- [39] W. Woess, Random walks on infinite graphs and groups, Cambridge Tracts in Mathematics 138, Cambridge Univ. Press, 2000. Zbl0951.60002MR1743100
- [40] W. Woess, Context-free pairs of groups II—cuts, tree sets, and random walks, Discrete Math.312 (2012), 157–173. MR2852518
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.