Multifractal analysis of the divergence of Fourier series
Frédéric Bayart; Yanick Heurteaux
Annales scientifiques de l'École Normale Supérieure (2012)
- Volume: 45, Issue: 6, page 927-946
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topBayart, Frédéric, and Heurteaux, Yanick. "Multifractal analysis of the divergence of Fourier series." Annales scientifiques de l'École Normale Supérieure 45.6 (2012): 927-946. <http://eudml.org/doc/272112>.
@article{Bayart2012,
abstract = {A famous theorem of Carleson says that, given any function $f\in L^p(\mathbb \{T\})$, $p\in (1,+\infty )$, its Fourier series $(S_nf(x))$ converges for almost every $x\in \mathbb \{T\}$. Beside this property, the series may diverge at some point, without exceeding $O(n^\{1/p\})$. We define the divergence index at $x$ as the infimum of the positive real numbers $\beta $ such that $S_nf(x)=O(n^\beta )$ and we are interested in the size of the exceptional sets $E_\beta $, namely the sets of $x\in \mathbb \{T\}$ with divergence index equal to $\beta $. We show that quasi-all functions in $L^p(\mathbb \{T\})$ have a multifractal behavior with respect to this definition. Precisely, for quasi-all functions in $L^p(\mathbb \{T\})$, for all $\beta \in [0,1/p]$, $E_\beta $ has Hausdorff dimension equal to $1-\beta p$. We also investigate the same problem in $\mathcal \{C\}(\mathbb \{T\})$, replacing polynomial divergence by logarithmic divergence. In this context, the results that we get on the size of the exceptional sets are rather surprising.},
author = {Bayart, Frédéric, Heurteaux, Yanick},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Fourier series; multifractal analysis; divergence; Baire category theorem},
language = {eng},
number = {6},
pages = {927-946},
publisher = {Société mathématique de France},
title = {Multifractal analysis of the divergence of Fourier series},
url = {http://eudml.org/doc/272112},
volume = {45},
year = {2012},
}
TY - JOUR
AU - Bayart, Frédéric
AU - Heurteaux, Yanick
TI - Multifractal analysis of the divergence of Fourier series
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2012
PB - Société mathématique de France
VL - 45
IS - 6
SP - 927
EP - 946
AB - A famous theorem of Carleson says that, given any function $f\in L^p(\mathbb {T})$, $p\in (1,+\infty )$, its Fourier series $(S_nf(x))$ converges for almost every $x\in \mathbb {T}$. Beside this property, the series may diverge at some point, without exceeding $O(n^{1/p})$. We define the divergence index at $x$ as the infimum of the positive real numbers $\beta $ such that $S_nf(x)=O(n^\beta )$ and we are interested in the size of the exceptional sets $E_\beta $, namely the sets of $x\in \mathbb {T}$ with divergence index equal to $\beta $. We show that quasi-all functions in $L^p(\mathbb {T})$ have a multifractal behavior with respect to this definition. Precisely, for quasi-all functions in $L^p(\mathbb {T})$, for all $\beta \in [0,1/p]$, $E_\beta $ has Hausdorff dimension equal to $1-\beta p$. We also investigate the same problem in $\mathcal {C}(\mathbb {T})$, replacing polynomial divergence by logarithmic divergence. In this context, the results that we get on the size of the exceptional sets are rather surprising.
LA - eng
KW - Fourier series; multifractal analysis; divergence; Baire category theorem
UR - http://eudml.org/doc/272112
ER -
References
top- [1] J.-M. Aubry, On the rate of pointwise divergence of Fourier and wavelet series in , J. Approx. Theory138 (2006), 97–111. Zbl1096.42022MR2197605
- [2] F. Bayart & Y. Heurteaux, Multifractal analysis of the divergence of Fourier series: The extreme cases, preprint arXiv:1110.5478. Zbl1278.42003MR3075108
- [3] V. Beresnevich & S. Velani, A mass transference principle and the Duffin-Schaeffer conjecture for Hausdorff measures, Ann. of Math.164 (2006), 971–992. Zbl1148.11033MR2259250
- [4] M. M. Dodson, M. V. Melián, D. Pestana & S. L. Velani, Patterson measure and ubiquity, Ann. Acad. Sci. Fenn. Ser. A I Math.20 (1995), 37–60. Zbl0816.11043MR1304105
- [5] K. Falconer, Fractal geometry. Mathematic foundations and applications, second éd., John Wiley & Sons Inc., 2003. Zbl1285.28011MR2118797
- [6] S. Jaffard, On lacunary wavelet series, Ann. Appl. Probab.10 (2000), 313–329. Zbl1063.60053MR1765214
- [7] S. Jaffard, On the Frisch-Parisi conjecture, J. Math. Pures Appl.79 (2000), 525–552. Zbl0963.28009MR1770660
- [8] J.-P. Kahane & Y. Katznelson, Sur les ensembles de divergence des séries trigonométriques, Studia Math.26 (1966), 305–306. Zbl0143.28901MR199633
- [9] J.-P. Kahane & R. Salem, Ensembles parfaits et séries trigonométriques, Actualités Sci. Indust. 1301, Hermann, 1963. Zbl0112.29304MR160065
- [10] Y. Katznelson, An introduction to harmonic analysis, John Wiley & Sons Inc., 1968. Zbl0352.43001MR248482
- [11] P. Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge Studies in Advanced Math. 44, Cambridge Univ. Press, 1995. Zbl0819.28004MR1333890
- [12] P. Mörters & Y. Peres, Brownian motion, Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge Univ. Press, 2010. Zbl1243.60002MR2604525
- [13] J. Arias de Reyna, Pointwise convergence of Fourier series, Lecture Notes in Math. 1785, Springer, 2002. Zbl1003.42001MR1906800
- [14] A. Zygmund, Trigonometric series, 3rd éd., Cambridge Univ. Press, 2003. Zbl0367.42001
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.