On standard norm varieties
Nikita A. Karpenko; Alexander S. Merkurjev
Annales scientifiques de l'École Normale Supérieure (2013)
- Volume: 46, Issue: 1, page 177-216
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topKarpenko, Nikita A., and Merkurjev, Alexander S.. "On standard norm varieties." Annales scientifiques de l'École Normale Supérieure 46.1 (2013): 177-216. <http://eudml.org/doc/272131>.
@article{Karpenko2013,
abstract = {Let $p$ be a prime integer and $F$ a field of characteristic $0$. Let $X$ be thenorm varietyof a symbol in the Galois cohomology group $H^\{n+1\}(F,\mu _p^\{\otimes n\})$ (for some $n\ge 1$), constructed in the proof of the Bloch-Kato conjecture. The main result of the paper affirms that the function field $F(X)$ has the following property: for any equidimensional variety $Y$, the change of field homomorphism $\mathop \{\mathrm \{CH\}\}\nolimits (Y)\rightarrow \mathop \{\mathrm \{CH\}\}\nolimits (Y_\{F(X)\})$ of Chow groups with coefficients in integers localized at $p$ is surjective in codimensions $< (\dim X)/(p-1)$. One of the main ingredients of the proof is a computation of Chow groups of a (generalized) Rost motive (a variant of the main result not relying on this is given in the appendix). Another important ingredient is$A$-trivialityof $X$, the property saying that the degree homomorphism on $\mathop \{\mathrm \{CH\}\}\nolimits _0(X_L)$ is injective for any field extension $L/F$ with $X(L)\ne \emptyset $. The proof involves the theory of rational correspondences reviewed in the appendix.},
author = {Karpenko, Nikita A., Merkurjev, Alexander S.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {norm varieties; Chow groups and motives; Steenrod operations},
language = {eng},
number = {1},
pages = {177-216},
publisher = {Société mathématique de France},
title = {On standard norm varieties},
url = {http://eudml.org/doc/272131},
volume = {46},
year = {2013},
}
TY - JOUR
AU - Karpenko, Nikita A.
AU - Merkurjev, Alexander S.
TI - On standard norm varieties
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2013
PB - Société mathématique de France
VL - 46
IS - 1
SP - 177
EP - 216
AB - Let $p$ be a prime integer and $F$ a field of characteristic $0$. Let $X$ be thenorm varietyof a symbol in the Galois cohomology group $H^{n+1}(F,\mu _p^{\otimes n})$ (for some $n\ge 1$), constructed in the proof of the Bloch-Kato conjecture. The main result of the paper affirms that the function field $F(X)$ has the following property: for any equidimensional variety $Y$, the change of field homomorphism $\mathop {\mathrm {CH}}\nolimits (Y)\rightarrow \mathop {\mathrm {CH}}\nolimits (Y_{F(X)})$ of Chow groups with coefficients in integers localized at $p$ is surjective in codimensions $< (\dim X)/(p-1)$. One of the main ingredients of the proof is a computation of Chow groups of a (generalized) Rost motive (a variant of the main result not relying on this is given in the appendix). Another important ingredient is$A$-trivialityof $X$, the property saying that the degree homomorphism on $\mathop {\mathrm {CH}}\nolimits _0(X_L)$ is injective for any field extension $L/F$ with $X(L)\ne \emptyset $. The proof involves the theory of rational correspondences reviewed in the appendix.
LA - eng
KW - norm varieties; Chow groups and motives; Steenrod operations
UR - http://eudml.org/doc/272131
ER -
References
top- [1] A. R. Boisvert, A new definition of the Steenrod operations in algebraic geometry, ProQuest LLC, Ann Arbor, MI, 2007, Thesis (Ph.D.)–University of California, Los Angeles. MR2710781
- [2] A. R. Boisvert, A new definition of the Steenrod operations in algebraic geometry, preprint arXiv:0805.1414.
- [3] P. Brosnan, A short proof of Rost nilpotence via refined correspondences, Doc. Math.8 (2003), 69–78. Zbl1044.11017MR2029161
- [4] P. Brosnan, Steenrod operations in Chow theory, Trans. Amer. Math. Soc.355 (2003), 1869–1903. Zbl1045.55005MR1953530
- [5] V. Chernousov & A. S. Merkurjev, Motivic decomposition of projective homogeneous varieties and the Krull-Schmidt theorem, Transform. Groups11 (2006), 371–386. Zbl1111.14009MR2264459
- [6] P. K. Draxl, Skew fields, London Mathematical Society Lecture Note Series 81, Cambridge Univ. Press, 1983. MR696937
- [7] R. Elman, N. Karpenko & A. Merkurjev, The algebraic and geometric theory of quadratic forms, American Mathematical Society Colloquium Publications 56, Amer. Math. Soc., 2008. Zbl1165.11042MR2427530
- [8] R. Fino, Around rationality of integral cycles, J. Pure Appl. Algebra (2012), doi://10.1016/j.jpaa.2012.12.003. Zbl1295.14008MR3042631
- [9] R. Fino, Around rationality of cycles, to appear in Cent. Eur. J. Math. Zbl1300.14006MR3036018
- [10] W. Fulton, Intersection theory, second éd., Ergeb. Math. Grenzg. 2, Springer, 1998. Zbl0885.14002MR1644323
- [11] S. Garibaldi, Cohomological invariants: exceptional groups and spin groups, Mem. Amer. Math. Soc. 200 (2009), 81. Zbl1191.11009MR2528487
- [12] A. Grothendieck, Techniques de construction et théorèmes d’existence en géométrie algébrique. IV. Les schémas de Hilbert, in Séminaire Bourbaki, vol. 6, exp. no 221, Soc. Math. France, 1995, 249–276. MR1611822
- [13] B. Kahn & R. Sujatha, Birational motives, I, -theory Preprint Archives (preprint server) 596, 2002.
- [14] N. Karpenko & A. Merkurjev, Rost projectors and Steenrod operations, Doc. Math.7 (2002), 481–493. Zbl1030.11013MR2015051
- [15] N. A. Karpenko, Criteria of motivic equivalence for quadratic forms and central simple algebras, Math. Ann.317 (2000), 585–611. Zbl0965.11015MR1776119
- [16] N. A. Karpenko, Weil transfer of algebraic cycles, Indag. Math. (N.S.) 11 (2000), 73–86. Zbl1047.14004MR1809664
- [17] N. A. Karpenko, Upper motives of algebraic groups and incompressibility of Severi-Brauer varieties, J. reine angew. Math. (2012), doi://10.1515/crelle.2012.011. Zbl1267.14009MR3039776
- [18] N. A. Karpenko & A. S. Merkurjev, Canonical -dimension of algebraic groups, Adv. Math.205 (2006), 410–433. Zbl1119.14041MR2258262
- [19] J. I. Manin, Correspondences, motifs and monoidal transformations, Mat. Sb. (N.S.) 77 (119) (1968), 475–507. Zbl0199.24803MR258836
- [20] A. S. Merkurʼev & A. Suslin, -cohomology of Severi-Brauer varieties and the norm residue homomorphism, Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), 1011–1046, 1135–1136. MR675529
- [21] A. Merkurjev, Rost invariants of simply connected algebraic groups, in Cohomological invariants in Galois cohomology, Univ. Lecture Ser. 28, Amer. Math. Soc., 2003, 101–158. MR1999385
- [22] A. Merkurjev, Unramified elements in cycle modules, J. Lond. Math. Soc.78 (2008), 51–64. Zbl1155.14017MR2427051
- [23] A. Merkurjev & A. Suslin, Motivic cohomology of the simplicial motive of a Rost variety, J. Pure Appl. Algebra214 (2010), 2017–2026. Zbl1200.14041MR2645334
- [24] A. S. Merkurjev, Essential dimension, in Quadratic forms—algebra, arithmetic, and geometry, Contemp. Math. 493, Amer. Math. Soc., 2009, 299–325. Zbl1188.14006MR2537108
- [25] D. H. Nguyen, On p-generic splitting varieties for Milnor K-symbols mod p, ProQuest LLC, Ann Arbor, MI, 2009, Thesis (Ph.D.)–University of California, Los Angeles. MR2714019
- [26] D. H. Nguyen, On -generic splitting varieties for Milnor -symbols , preprint arXiv:1003.3971. MR2714019
- [27] I. Panin, Application of -theory in algebraic geometry, Thèse, LOMI, Leningrad, 1984.
- [28] M. Rost, Chow groups with coefficients, Doc. Math.1 (1996), No. 16, 319–393. Zbl0864.14002MR1418952
- [29] M. Rost, On the basic correspondence of a splitting variety, preprint http://www.math.uni-bielefeld.de/~rost/data/bkc-c.pdf.
- [30] A. Suslin & S. Joukhovitski, Norm varieties, J. Pure Appl. Algebra206 (2006), 245–276. MR2220090
- [31] M. L. Thakur, Isotopy and invariants of Albert algebras, Comment. Math. Helv.74 (1999), 297–305. Zbl0931.17021MR1691951
- [32] A. Vishik, Generic points of quadrics and Chow groups, Manuscripta Math.122 (2007), 365–374. Zbl1154.14003MR2305424
- [33] A. Vishik, Rationality of integral cycles, Doc. Math. (2010), 661–670, Extra volume: Andrei A. Suslin sixtieth birthday. Zbl1257.14003MR2804267
- [34] A. Vishik & K. Zainoulline, Motivic splitting lemma, Doc. Math.13 (2008), 81–96. Zbl1132.14303MR2393083
- [35] V. Voevodsky, On motivic cohomology with -coefficients, Ann. of Math.174 (2011), 401–438. Zbl1236.14026MR2811603
- [36] K. Zainoulline, Special correspondences and Chow traces of Landweber-Novikov operations, J. reine angew. Math. 628 (2009), 195–204. Zbl1171.14004MR2503240
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.