Displaying similar documents to “On standard norm varieties”

Local-global divisibility of rational points in some commutative algebraic groups

Roberto Dvornicich, Umberto Zannier (2001)

Bulletin de la Société Mathématique de France

Similarity:

Let 𝒜 be a commutative algebraic group defined over a number field  k . We consider the following question:A complete answer for the case of the multiplicative group 𝔾 m is classical. We study other instances and in particular obtain an affirmative answer when r is a prime and  𝒜 is either an elliptic curve or a torus of small dimension with respect to r . Without restriction on the dimension of a torus, we produce an example showing that the answer can be negative even when r is a prime. ...

Coincidence for substitutions of Pisot type

Marcy Barge, Beverly Diamond (2002)

Bulletin de la Société Mathématique de France

Similarity:

Let ϕ be a substitution of Pisot type on the alphabet 𝒜 = { 1 , 2 , ... , d } ; ϕ satisfies theif for every i , j 𝒜 , there are integers k , n such that ϕ n ( i ) and ϕ n ( j ) have the same k -th letter, and the prefixes of length k - 1 of ϕ n ( i ) and ϕ n ( j ) have the same image under the abelianization map. We prove that the strong coincidence condition is satisfied if d = 2 and provide a partial result for d 2 .

On multiset colorings of generalized corona graphs

Yun Feng, Wensong Lin (2016)

Mathematica Bohemica

Similarity:

A vertex k -coloring of a graph G is a if M ( u ) M ( v ) for every edge u v E ( G ) , where M ( u ) and M ( v ) denote the multisets of colors of the neighbors of u and v , respectively. The minimum k for which G has a multiset k -coloring is the χ m ( G ) of G . For an integer 0 , the - of a graph G , cor ( G ) , is the graph obtained from G by adding, for each vertex v in G , new neighbors which are end-vertices. In this paper, the multiset chromatic numbers are determined for - of all complete graphs, the regular complete...

Some results on spaces with 1 -calibre

Wei-Feng Xuan, Wei-Xue Shi (2016)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We prove that, assuming , if X is a space with 1 -calibre and a zeroset diagonal, then X is submetrizable. This gives a consistent positive answer to the question of Buzyakova in Observations on spaces with zeroset or regular G δ -diagonals, Comment. Math. Univ. Carolin. 46 (2005), no. 3, 469–473. We also make some observations on spaces with 1 -calibre.

Purity of level m stratifications

Marc-Hubert Nicole, Adrian Vasiu, Torsten Wedhorn (2010)

Annales scientifiques de l'École Normale Supérieure

Similarity:

Let k be a field of characteristic p > 0 . Let D m be a BT m over k (i.e., an m -truncated Barsotti–Tate group over k ). Let S be a k -scheme and let X be a BT m over S . Let S D m ( X ) be the subscheme of S which describes the locus where X is locally for the fppf topology isomorphic to D m . If p 5 , we show that S D m ( X ) is pure in S , i.e. the immersion S D m ( X ) S is affine. For p { 2 , 3 } , we prove purity if D m satisfies a certain technical property depending only on its p -torsion D m [ p ] . For p 5 , we apply the developed techniques to show that...

On sums and products in a field

Guang-Liang Zhou, Zhi-Wei Sun (2022)

Czechoslovak Mathematical Journal

Similarity:

We study sums and products in a field. Let F be a field with ch ( F ) 2 , where ch ( F ) is the characteristic of F . For any integer k 4 , we show that any x F can be written as a 1 + + a k with a 1 , , a k F and a 1 a k = 1 , and that for any α F { 0 } we can write every x F as a 1 a k with a 1 , , a k F and a 1 + + a k = α . We also prove that for any x F and k { 2 , 3 , } there are a 1 , , a 2 k F such that a 1 + + a 2 k = x = a 1 a 2 k .

Thompson’s conjecture for the alternating group of degree 2 p and 2 p + 1

Azam Babai, Ali Mahmoudifar (2017)

Czechoslovak Mathematical Journal

Similarity:

For a finite group G denote by N ( G ) the set of conjugacy class sizes of G . In 1980s, J. G. Thompson posed the following conjecture: If L is a finite nonabelian simple group, G is a finite group with trivial center and N ( G ) = N ( L ) , then G L . We prove this conjecture for an infinite class of simple groups. Let p be an odd prime. We show that every finite group G with the property Z ( G ) = 1 and N ( G ) = N ( A i ) is necessarily isomorphic to A i , where i { 2 p , 2 p + 1 } .

Dual Blobs and Plancherel Formulas

Ju-Lee Kim (2004)

Bulletin de la Société Mathématique de France

Similarity:

Let k be a p -adic field. Let G be the group of k -rational points of a connected reductive group 𝖦 defined over k , and let 𝔤 be its Lie algebra. Under certain hypotheses on 𝖦 and k , wethe tempered dual G ^ of G via the Plancherel formula on 𝔤 , using some character expansions. This involves matching spectral decomposition factors of the Plancherel formulas on 𝔤 and G . As a consequence, we prove that any tempered representation contains a good minimal 𝖪 -type; we extend this result to irreducible...

The σ -property in C ( X )

Anthony W. Hager (2016)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

The σ -property of a Riesz space (real vector lattice) B is: For each sequence { b n } of positive elements of B , there is a sequence { λ n } of positive reals, and b B , with λ n b n b for each n . This condition is involved in studies in Riesz spaces of abstract Egoroff-type theorems, and of the countable lifting property. Here, we examine when “ σ ” obtains for a Riesz space of continuous real-valued functions C ( X ) . A basic result is: For discrete X , C ( X ) has σ iff the cardinal | X | < 𝔟 , Rothberger’s bounding number. Consequences...

Obstruction sets and extensions of groups

Francesca Balestrieri (2016)

Acta Arithmetica

Similarity:

Let X be a nice variety over a number field k. We characterise in pure “descent-type” terms some inequivalent obstruction sets refining the inclusion X ( k ) é t , B r X ( k ) B r . In the first part, we apply ideas from the proof of X ( k ) é t , B r = X ( k ) k by Skorobogatov and Demarche to new cases, by proving a comparison theorem for obstruction sets. In the second part, we show that if k are such that E x t ( , k ) , then X ( k ) = X ( k ) . This allows us to conclude, among other things, that X ( k ) é t , B r = X ( k ) k and X ( k ) S o l , B r = X ( k ) S o l k .