Travelling graphs for the forced mean curvature motion in an arbitrary space dimension
Régis Monneau; Jean-Michel Roquejoffre; Violaine Roussier-Michon
Annales scientifiques de l'École Normale Supérieure (2013)
- Volume: 46, Issue: 2, page 217-248
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topMonneau, Régis, Roquejoffre, Jean-Michel, and Roussier-Michon, Violaine. "Travelling graphs for the forced mean curvature motion in an arbitrary space dimension." Annales scientifiques de l'École Normale Supérieure 46.2 (2013): 217-248. <http://eudml.org/doc/272133>.
@article{Monneau2013,
abstract = {We construct travelling wave graphs of the form $z=-ct+\phi (x)$, $\phi : x \in \mathbb \{R\}^\{N-1\} \mapsto \phi (x)\in \mathbb \{R\}$, $N \ge 2$, solutions to the $N$-dimensional forced mean curvature motion $V_n=-c_0+\kappa $ ($c\ge c_0$) with prescribed asymptotics. For any $1$-homogeneous function $\phi _\{\infty \}$, viscosity solution to the eikonal equation $|D\phi _\{\infty \}|=\sqrt\{(c/c_0)^2-1\}$, we exhibit a smooth concave solution to the forced mean curvature motion whose asymptotics is driven by $\phi _\{\infty \}$. We also describe $\phi _\{\infty \}$ in terms of a probability measure on $§^\{N-2\}$.},
author = {Monneau, Régis, Roquejoffre, Jean-Michel, Roussier-Michon, Violaine},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {forced mean curvature movement; eikonal equation; Hamilton-Jacobi equations; viscosity solution; reaction diffusion equations; travelling fronts},
language = {eng},
number = {2},
pages = {217-248},
publisher = {Société mathématique de France},
title = {Travelling graphs for the forced mean curvature motion in an arbitrary space dimension},
url = {http://eudml.org/doc/272133},
volume = {46},
year = {2013},
}
TY - JOUR
AU - Monneau, Régis
AU - Roquejoffre, Jean-Michel
AU - Roussier-Michon, Violaine
TI - Travelling graphs for the forced mean curvature motion in an arbitrary space dimension
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2013
PB - Société mathématique de France
VL - 46
IS - 2
SP - 217
EP - 248
AB - We construct travelling wave graphs of the form $z=-ct+\phi (x)$, $\phi : x \in \mathbb {R}^{N-1} \mapsto \phi (x)\in \mathbb {R}$, $N \ge 2$, solutions to the $N$-dimensional forced mean curvature motion $V_n=-c_0+\kappa $ ($c\ge c_0$) with prescribed asymptotics. For any $1$-homogeneous function $\phi _{\infty }$, viscosity solution to the eikonal equation $|D\phi _{\infty }|=\sqrt{(c/c_0)^2-1}$, we exhibit a smooth concave solution to the forced mean curvature motion whose asymptotics is driven by $\phi _{\infty }$. We also describe $\phi _{\infty }$ in terms of a probability measure on $§^{N-2}$.
LA - eng
KW - forced mean curvature movement; eikonal equation; Hamilton-Jacobi equations; viscosity solution; reaction diffusion equations; travelling fronts
UR - http://eudml.org/doc/272133
ER -
References
top- [1] G. Barles, H. M. Soner & P. E. Souganidis, Front propagation and phase field theory, SIAM J. Control Optim.31 (1993), 439–469. Zbl0785.35049MR1205984
- [2] L. A. Caffarelli & W. Littman, Representation formulas for solutions to in , in Studies in partial differential equations, MAA Stud. Math. 23, Math. Assoc. America, 1982, 249–263. MR716508
- [3] M. G. Crandall, H. Ishii & P.-L. Lions, User’s guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.) 27 (1992), 1–67. Zbl0755.35015MR1118699
- [4] L. C. Evans, Partial differential equations, Graduate Studies in Math. 19, Amer. Math. Soc., 1998. Zbl0902.35002MR1625845
- [5] P. C. Fife, Dynamics of internal layers and diffusive interfaces, CBMS-NSF Regional Conference Series in Applied Mathematics 53, Society for Industrial and Applied Mathematics (SIAM), 1988. Zbl0684.35001MR981594
- [6] D. Gilbarg & N. S. Trudinger, Elliptic partial differential equations of second order, Grundl. Math. Wiss. 224, Springer, 1977. Zbl0361.35003MR473443
- [7] F. Hamel, R. Monneau & J.-M. Roquejoffre, Existence and qualitative properties of multidimensional conical bistable fronts, Discrete Contin. Dyn. Syst.13 (2005), 1069–1096. Zbl1097.35078MR2166719
- [8] F. Hamel, R. Monneau & J.-M. Roquejoffre, Asymptotic properties and classification of bistable fronts with Lipschitz level sets, Discrete Contin. Dyn. Syst.14 (2006), 75–92. Zbl1194.35151MR2170314
- [9] C. Imbert, Convexity of solutions and estimates for fully nonlinear elliptic equations, J. Math. Pures Appl.85 (2006), 791–807. Zbl1206.35108MR2236244
- [10] J. I. Kanelʼ, Stabilization of solutions of the Cauchy problem for equations encountered in combustion theory, Mat. Sb. (N.S.) 59 (101) (1962), 245–288. MR157130
- [11] P. de Mottoni & M. Schatzman, Geometrical evolution of developed interfaces, Trans. Amer. Math. Soc.347 (1995), 1533–1589. Zbl0840.35010MR1672406
- [12] H. Ninomiya & M. Taniguchi, Traveling curved fronts of a mean curvature flow with constant driving force, in Free boundary problems: theory and applications, I (Chiba, 1999), GAKUTO Internat. Ser. Math. Sci. Appl. 13, Gakkōtosho, 2000, 206–221. Zbl0957.35124MR1793036
- [13] H. Ninomiya & M. Taniguchi, Existence and global stability of traveling curved fronts in the Allen-Cahn equations, J. Differential Equations213 (2005), 204–233. Zbl1159.35378MR2139343
- [14] M. Taniguchi, Multi-dimensional traveling fronts in bistable reaction-diffusion equations, Discrete Contin. Dyn. Syst.32 (2012), 1011–1046. Zbl1235.35067MR2851889
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.