Travelling graphs for the forced mean curvature motion in an arbitrary space dimension

Régis Monneau; Jean-Michel Roquejoffre; Violaine Roussier-Michon

Annales scientifiques de l'École Normale Supérieure (2013)

  • Volume: 46, Issue: 2, page 217-248
  • ISSN: 0012-9593

Abstract

top
We construct travelling wave graphs of the form z = - c t + φ ( x ) , φ : x N - 1 φ ( x ) , N 2 , solutions to the N -dimensional forced mean curvature motion V n = - c 0 + κ ( c c 0 ) with prescribed asymptotics. For any 1 -homogeneous function φ , viscosity solution to the eikonal equation | D φ | = ( c / c 0 ) 2 - 1 , we exhibit a smooth concave solution to the forced mean curvature motion whose asymptotics is driven by  φ . We also describe φ in terms of a probability measure on  § N - 2 .

How to cite

top

Monneau, Régis, Roquejoffre, Jean-Michel, and Roussier-Michon, Violaine. "Travelling graphs for the forced mean curvature motion in an arbitrary space dimension." Annales scientifiques de l'École Normale Supérieure 46.2 (2013): 217-248. <http://eudml.org/doc/272133>.

@article{Monneau2013,
abstract = {We construct travelling wave graphs of the form $z=-ct+\phi (x)$, $\phi : x \in \mathbb \{R\}^\{N-1\} \mapsto \phi (x)\in \mathbb \{R\}$, $N \ge 2$, solutions to the $N$-dimensional forced mean curvature motion $V_n=-c_0+\kappa $ ($c\ge c_0$) with prescribed asymptotics. For any $1$-homogeneous function $\phi _\{\infty \}$, viscosity solution to the eikonal equation $|D\phi _\{\infty \}|=\sqrt\{(c/c_0)^2-1\}$, we exhibit a smooth concave solution to the forced mean curvature motion whose asymptotics is driven by $\phi _\{\infty \}$. We also describe $\phi _\{\infty \}$ in terms of a probability measure on $§^\{N-2\}$.},
author = {Monneau, Régis, Roquejoffre, Jean-Michel, Roussier-Michon, Violaine},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {forced mean curvature movement; eikonal equation; Hamilton-Jacobi equations; viscosity solution; reaction diffusion equations; travelling fronts},
language = {eng},
number = {2},
pages = {217-248},
publisher = {Société mathématique de France},
title = {Travelling graphs for the forced mean curvature motion in an arbitrary space dimension},
url = {http://eudml.org/doc/272133},
volume = {46},
year = {2013},
}

TY - JOUR
AU - Monneau, Régis
AU - Roquejoffre, Jean-Michel
AU - Roussier-Michon, Violaine
TI - Travelling graphs for the forced mean curvature motion in an arbitrary space dimension
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2013
PB - Société mathématique de France
VL - 46
IS - 2
SP - 217
EP - 248
AB - We construct travelling wave graphs of the form $z=-ct+\phi (x)$, $\phi : x \in \mathbb {R}^{N-1} \mapsto \phi (x)\in \mathbb {R}$, $N \ge 2$, solutions to the $N$-dimensional forced mean curvature motion $V_n=-c_0+\kappa $ ($c\ge c_0$) with prescribed asymptotics. For any $1$-homogeneous function $\phi _{\infty }$, viscosity solution to the eikonal equation $|D\phi _{\infty }|=\sqrt{(c/c_0)^2-1}$, we exhibit a smooth concave solution to the forced mean curvature motion whose asymptotics is driven by $\phi _{\infty }$. We also describe $\phi _{\infty }$ in terms of a probability measure on $§^{N-2}$.
LA - eng
KW - forced mean curvature movement; eikonal equation; Hamilton-Jacobi equations; viscosity solution; reaction diffusion equations; travelling fronts
UR - http://eudml.org/doc/272133
ER -

References

top
  1. [1] G. Barles, H. M. Soner & P. E. Souganidis, Front propagation and phase field theory, SIAM J. Control Optim.31 (1993), 439–469. Zbl0785.35049MR1205984
  2. [2] L. A. Caffarelli & W. Littman, Representation formulas for solutions to Δ u - u = 0 in 𝐑 n , in Studies in partial differential equations, MAA Stud. Math. 23, Math. Assoc. America, 1982, 249–263. MR716508
  3. [3] M. G. Crandall, H. Ishii & P.-L. Lions, User’s guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.) 27 (1992), 1–67. Zbl0755.35015MR1118699
  4. [4] L. C. Evans, Partial differential equations, Graduate Studies in Math. 19, Amer. Math. Soc., 1998. Zbl0902.35002MR1625845
  5. [5] P. C. Fife, Dynamics of internal layers and diffusive interfaces, CBMS-NSF Regional Conference Series in Applied Mathematics 53, Society for Industrial and Applied Mathematics (SIAM), 1988. Zbl0684.35001MR981594
  6. [6] D. Gilbarg & N. S. Trudinger, Elliptic partial differential equations of second order, Grundl. Math. Wiss. 224, Springer, 1977. Zbl0361.35003MR473443
  7. [7] F. Hamel, R. Monneau & J.-M. Roquejoffre, Existence and qualitative properties of multidimensional conical bistable fronts, Discrete Contin. Dyn. Syst.13 (2005), 1069–1096. Zbl1097.35078MR2166719
  8. [8] F. Hamel, R. Monneau & J.-M. Roquejoffre, Asymptotic properties and classification of bistable fronts with Lipschitz level sets, Discrete Contin. Dyn. Syst.14 (2006), 75–92. Zbl1194.35151MR2170314
  9. [9] C. Imbert, Convexity of solutions and C 1 , 1 estimates for fully nonlinear elliptic equations, J. Math. Pures Appl.85 (2006), 791–807. Zbl1206.35108MR2236244
  10. [10] J. I. Kanelʼ, Stabilization of solutions of the Cauchy problem for equations encountered in combustion theory, Mat. Sb. (N.S.) 59 (101) (1962), 245–288. MR157130
  11. [11] P. de Mottoni & M. Schatzman, Geometrical evolution of developed interfaces, Trans. Amer. Math. Soc.347 (1995), 1533–1589. Zbl0840.35010MR1672406
  12. [12] H. Ninomiya & M. Taniguchi, Traveling curved fronts of a mean curvature flow with constant driving force, in Free boundary problems: theory and applications, I (Chiba, 1999), GAKUTO Internat. Ser. Math. Sci. Appl. 13, Gakkōtosho, 2000, 206–221. Zbl0957.35124MR1793036
  13. [13] H. Ninomiya & M. Taniguchi, Existence and global stability of traveling curved fronts in the Allen-Cahn equations, J. Differential Equations213 (2005), 204–233. Zbl1159.35378MR2139343
  14. [14] M. Taniguchi, Multi-dimensional traveling fronts in bistable reaction-diffusion equations, Discrete Contin. Dyn. Syst.32 (2012), 1011–1046. Zbl1235.35067MR2851889

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.