Nonlinear compressible vortex sheets in two space dimensions
Jean-François Coulombel; Paolo Secchi
Annales scientifiques de l'École Normale Supérieure (2008)
- Volume: 41, Issue: 1, page 85-139
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topCoulombel, Jean-François, and Secchi, Paolo. "Nonlinear compressible vortex sheets in two space dimensions." Annales scientifiques de l'École Normale Supérieure 41.1 (2008): 85-139. <http://eudml.org/doc/272142>.
@article{Coulombel2008,
abstract = {We consider supersonic compressible vortex sheets for the isentropic Euler equations of gas dynamics in two space dimensions. The problem is a free boundary nonlinear hyperbolic problem with two main difficulties: the free boundary is characteristic, and the so-called Lopatinskii condition holds only in a weak sense, which yields losses of derivatives. Nevertheless, we prove the local existence of such piecewise smooth solutions to the Euler equations. Since the a priori estimates for the linearized equations exhibit a loss of regularity, our existence result is proved by using a suitable modification of the Nash-Moser iteration scheme. We also show how a similar analysis yields the existence of weakly stable shock waves in isentropic gas dynamics, and the existence of weakly stable liquid/vapor phase transitions.},
author = {Coulombel, Jean-François, Secchi, Paolo},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {compressible Euler equations; vortex sheets; contact discontinuities; weak stability; loss of derivatives; Euler equations; hyperbolic; Lopatinski condition; Nash-Moser iteration scheme},
language = {eng},
number = {1},
pages = {85-139},
publisher = {Société mathématique de France},
title = {Nonlinear compressible vortex sheets in two space dimensions},
url = {http://eudml.org/doc/272142},
volume = {41},
year = {2008},
}
TY - JOUR
AU - Coulombel, Jean-François
AU - Secchi, Paolo
TI - Nonlinear compressible vortex sheets in two space dimensions
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2008
PB - Société mathématique de France
VL - 41
IS - 1
SP - 85
EP - 139
AB - We consider supersonic compressible vortex sheets for the isentropic Euler equations of gas dynamics in two space dimensions. The problem is a free boundary nonlinear hyperbolic problem with two main difficulties: the free boundary is characteristic, and the so-called Lopatinskii condition holds only in a weak sense, which yields losses of derivatives. Nevertheless, we prove the local existence of such piecewise smooth solutions to the Euler equations. Since the a priori estimates for the linearized equations exhibit a loss of regularity, our existence result is proved by using a suitable modification of the Nash-Moser iteration scheme. We also show how a similar analysis yields the existence of weakly stable shock waves in isentropic gas dynamics, and the existence of weakly stable liquid/vapor phase transitions.
LA - eng
KW - compressible Euler equations; vortex sheets; contact discontinuities; weak stability; loss of derivatives; Euler equations; hyperbolic; Lopatinski condition; Nash-Moser iteration scheme
UR - http://eudml.org/doc/272142
ER -
References
top- [1] S. Alinhac, Existence d’ondes de raréfaction pour des systèmes quasi-linéaires hyperboliques multidimensionnels, Comm. Partial Differential Equations14 (1989), 173–230. Zbl0692.35063MR976971
- [2] S. Alinhac & S. Gérard, Opérateurs pseudo-différentiels et théorème de Nash-Moser, InterÉditions, 1991. Zbl0791.47044
- [3] M. Artola & A. Majda, Nonlinear development of instabilities in supersonic vortex sheets. I. The basic kink modes, Phys. D 28 (1987), 253–281. Zbl0632.76074
- [4] S. Benzoni-Gavage, Stability of multi-dimensional phase transitions in a van der Waals fluid, Nonlinear Anal.31 (1998), 243–263. Zbl0928.76015MR1487544
- [5] S. Benzoni-Gavage, Stability of subsonic planar phase boundaries in a van der Waals fluid, Arch. Ration. Mech. Anal.150 (1999), 23–55. Zbl0980.76023MR1738168
- [6] A. Blokhin & Y. Trakhinin, Stability of strong discontinuities in fluids and MHD, in Handbook of mathematical fluid dynamics, Vol. I, North-Holland, 2002, 545–652. Zbl1231.76344
- [7] J. Chazarain & A. Piriou, Introduction to the theory of linear partial differential equations, Studies in Mathematics and its Applications 14, North-Holland Publishing Co., 1982. Zbl0487.35002
- [8] J.-Y. Chemin, Dynamique des gaz à masse totale finie, Asymptotic Anal.3 (1990), 215–220. Zbl0708.76110MR1076448
- [9] J.-F. Coulombel, Weakly stable multidimensional shocks, Ann. Inst. H. Poincaré Anal. Non Linéaire21 (2004), 401–443. Zbl1072.35120MR2069632
- [10] J.-F. Coulombel, Well-posedness of hyperbolic initial boundary value problems, J. Math. Pures Appl.84 (2005), 786–818. Zbl1078.35066MR2138641
- [11] J.-F. Coulombel & A. Morando, Stability of contact discontinuities for the nonisentropic Euler equations, Ann. Univ. Ferrara Sez. VII (N.S.) 50 (2004), 79–90. Zbl1144.35456
- [12] J.-F. Coulombel & P. Secchi, The stability of compressible vortex sheets in two space dimensions, Indiana Univ. Math. J.53 (2004), 941–1012. Zbl1068.35100
- [13] J. A. Fejer & J. W. Miles, On the stability of a plane vortex sheet with respect to three-dimensional disturbances, J. Fluid Mech.15 (1963), 335–336. Zbl0122.44201
- [14] J. Francheteau & G. Métivier, Existence de chocs faibles pour des systèmes quasi-linéaires hyperboliques multidimensionnels, Astérisque 268 (2000), 198. Zbl0996.35001
- [15] H. Freistühler, Some results on the stability of non-classical shock waves, J. Partial Differential Equations11 (1998), 25–38. Zbl0903.35006
- [16] O. Guès, Problème mixte hyperbolique quasi-linéaire caractéristique, Comm. Partial Differential Equations15 (1990), 595–645. Zbl0712.35061MR1070840
- [17] R. S. Hamilton, The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. (N.S.) 7 (1982), 65–222. Zbl0499.58003MR656198
- [18] E. Harabetian, A convergent series expansion for hyperbolic systems of conservation laws, Trans. Amer. Math. Soc.294 (1986), 383–424. Zbl0599.35103MR825712
- [19] L. Hörmander, Implicit function theorems, Stanford university lecture notes, 1977.
- [20] T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Rational Mech. Anal.58 (1975), 181–205. Zbl0343.35056MR390516
- [21] P. D. Lax, Hyperbolic systems of conservation laws. II, Comm. Pure Appl. Math. 10 (1957), 537–566. Zbl0081.08803MR93653
- [22] J.-L. Lions & E. Magenes, Problèmes aux limites non homogènes et applications. Vol. 2, Travaux et Recherches Mathématiques, No. 18, Dunod, 1968. Zbl0165.10801
- [23] A. Majda, The existence of multidimensional shock fronts, Mem. Amer. Math. Soc. 43 (1983), 93. Zbl0517.76068MR699241
- [24] A. Majda, The stability of multidimensional shock fronts, Mem. Amer. Math. Soc. 41 (1983), 95. Zbl0506.76075MR683422
- [25] A. Majda, Compressible fluid flow and systems of conservation laws in several space variables, Applied Mathematical Sciences 53, Springer, 1984. Zbl0537.76001MR748308
- [26] A. Majda & S. Osher, Initial-boundary value problems for hyperbolic equations with uniformly characteristic boundary, Comm. Pure Appl. Math.28 (1975), 607–675. Zbl0314.35061
- [27] G. Métivier, Interaction de deux chocs pour un système de deux lois de conservation, en dimension deux d’espace, Trans. Amer. Math. Soc.296 (1986), 431–479. Zbl0619.35075MR846593
- [28] G. Métivier, Ondes soniques, J. Math. Pures Appl.70 (1991), 197–268. Zbl0728.35068MR1103034
- [29] G. Métivier, Stability of multidimensional shocks, in Advances in the theory of shock waves, Progr. Nonlinear Differential Equations Appl. 47, Birkhäuser, 2001, 25–103. Zbl1017.35075MR1842775
- [30] J. W. Miles, On the disturbed motion of a plane vortex sheet, J. Fluid Mech.4 (1958), 538–552. Zbl0084.42002MR97930
- [31] A. Mokrane, Problèmes mixtes hyperboliques non-linéaires, Thèse, Université de Rennes I, 1987.
- [32] A. Morando & P. Trebeschi, Stability of contact discontinuities for the nonisentropic Euler equations in two-space dimensions, preprint, 2007. Zbl1140.35347
- [33] J. B. Rauch & F. J. I. Massey, Differentiability of solutions to hyperbolic initial-boundary value problems, Trans. Amer. Math. Soc.189 (1974), 303–318. Zbl0282.35014
- [34] S. Schochet, The compressible Euler equations in a bounded domain: existence of solutions and the incompressible limit, Comm. Math. Phys.104 (1986), 49–75. Zbl0612.76082MR834481
- [35] P. Secchi, The initial-boundary value problem for linear symmetric hyperbolic systems with characteristic boundary of constant multiplicity, Differential Integral Equations9 (1996), 671–700. Zbl0853.35067MR1401431
- [36] P. Secchi, Well-posedness of characteristic symmetric hyperbolic systems, Arch. Rational Mech. Anal.134 (1996), 155–197. Zbl0857.35080MR1405665
- [37] D. Serre, Systems of conservation laws. 2, Cambridge University Press, 2000, Geometric structures, oscillations, and initial-boundary value problems. Zbl0936.35001MR1775057
- [38] T. C. Sideris, Formation of singularities in three-dimensional compressible fluids, Comm. Math. Phys.101 (1985), 475–485. Zbl0606.76088MR815196
- [39] H. Beirão da Veiga, On the barotropic motion of compressible perfect fluids, Ann. Scuola Norm. Sup. Pisa Cl. Sci.8 (1981), 317–351. Zbl0477.76059MR623940
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.