Nonlinear compressible vortex sheets in two space dimensions

Jean-François Coulombel; Paolo Secchi

Annales scientifiques de l'École Normale Supérieure (2008)

  • Volume: 41, Issue: 1, page 85-139
  • ISSN: 0012-9593

Abstract

top
We consider supersonic compressible vortex sheets for the isentropic Euler equations of gas dynamics in two space dimensions. The problem is a free boundary nonlinear hyperbolic problem with two main difficulties: the free boundary is characteristic, and the so-called Lopatinskii condition holds only in a weak sense, which yields losses of derivatives. Nevertheless, we prove the local existence of such piecewise smooth solutions to the Euler equations. Since the a priori estimates for the linearized equations exhibit a loss of regularity, our existence result is proved by using a suitable modification of the Nash-Moser iteration scheme. We also show how a similar analysis yields the existence of weakly stable shock waves in isentropic gas dynamics, and the existence of weakly stable liquid/vapor phase transitions.

How to cite

top

Coulombel, Jean-François, and Secchi, Paolo. "Nonlinear compressible vortex sheets in two space dimensions." Annales scientifiques de l'École Normale Supérieure 41.1 (2008): 85-139. <http://eudml.org/doc/272142>.

@article{Coulombel2008,
abstract = {We consider supersonic compressible vortex sheets for the isentropic Euler equations of gas dynamics in two space dimensions. The problem is a free boundary nonlinear hyperbolic problem with two main difficulties: the free boundary is characteristic, and the so-called Lopatinskii condition holds only in a weak sense, which yields losses of derivatives. Nevertheless, we prove the local existence of such piecewise smooth solutions to the Euler equations. Since the a priori estimates for the linearized equations exhibit a loss of regularity, our existence result is proved by using a suitable modification of the Nash-Moser iteration scheme. We also show how a similar analysis yields the existence of weakly stable shock waves in isentropic gas dynamics, and the existence of weakly stable liquid/vapor phase transitions.},
author = {Coulombel, Jean-François, Secchi, Paolo},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {compressible Euler equations; vortex sheets; contact discontinuities; weak stability; loss of derivatives; Euler equations; hyperbolic; Lopatinski condition; Nash-Moser iteration scheme},
language = {eng},
number = {1},
pages = {85-139},
publisher = {Société mathématique de France},
title = {Nonlinear compressible vortex sheets in two space dimensions},
url = {http://eudml.org/doc/272142},
volume = {41},
year = {2008},
}

TY - JOUR
AU - Coulombel, Jean-François
AU - Secchi, Paolo
TI - Nonlinear compressible vortex sheets in two space dimensions
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2008
PB - Société mathématique de France
VL - 41
IS - 1
SP - 85
EP - 139
AB - We consider supersonic compressible vortex sheets for the isentropic Euler equations of gas dynamics in two space dimensions. The problem is a free boundary nonlinear hyperbolic problem with two main difficulties: the free boundary is characteristic, and the so-called Lopatinskii condition holds only in a weak sense, which yields losses of derivatives. Nevertheless, we prove the local existence of such piecewise smooth solutions to the Euler equations. Since the a priori estimates for the linearized equations exhibit a loss of regularity, our existence result is proved by using a suitable modification of the Nash-Moser iteration scheme. We also show how a similar analysis yields the existence of weakly stable shock waves in isentropic gas dynamics, and the existence of weakly stable liquid/vapor phase transitions.
LA - eng
KW - compressible Euler equations; vortex sheets; contact discontinuities; weak stability; loss of derivatives; Euler equations; hyperbolic; Lopatinski condition; Nash-Moser iteration scheme
UR - http://eudml.org/doc/272142
ER -

References

top
  1. [1] S. Alinhac, Existence d’ondes de raréfaction pour des systèmes quasi-linéaires hyperboliques multidimensionnels, Comm. Partial Differential Equations14 (1989), 173–230. Zbl0692.35063MR976971
  2. [2] S. Alinhac & S. Gérard, Opérateurs pseudo-différentiels et théorème de Nash-Moser, InterÉditions, 1991. Zbl0791.47044
  3. [3] M. Artola & A. Majda, Nonlinear development of instabilities in supersonic vortex sheets. I. The basic kink modes, Phys. D 28 (1987), 253–281. Zbl0632.76074
  4. [4] S. Benzoni-Gavage, Stability of multi-dimensional phase transitions in a van der Waals fluid, Nonlinear Anal.31 (1998), 243–263. Zbl0928.76015MR1487544
  5. [5] S. Benzoni-Gavage, Stability of subsonic planar phase boundaries in a van der Waals fluid, Arch. Ration. Mech. Anal.150 (1999), 23–55. Zbl0980.76023MR1738168
  6. [6] A. Blokhin & Y. Trakhinin, Stability of strong discontinuities in fluids and MHD, in Handbook of mathematical fluid dynamics, Vol. I, North-Holland, 2002, 545–652. Zbl1231.76344
  7. [7] J. Chazarain & A. Piriou, Introduction to the theory of linear partial differential equations, Studies in Mathematics and its Applications 14, North-Holland Publishing Co., 1982. Zbl0487.35002
  8. [8] J.-Y. Chemin, Dynamique des gaz à masse totale finie, Asymptotic Anal.3 (1990), 215–220. Zbl0708.76110MR1076448
  9. [9] J.-F. Coulombel, Weakly stable multidimensional shocks, Ann. Inst. H. Poincaré Anal. Non Linéaire21 (2004), 401–443. Zbl1072.35120MR2069632
  10. [10] J.-F. Coulombel, Well-posedness of hyperbolic initial boundary value problems, J. Math. Pures Appl.84 (2005), 786–818. Zbl1078.35066MR2138641
  11. [11] J.-F. Coulombel & A. Morando, Stability of contact discontinuities for the nonisentropic Euler equations, Ann. Univ. Ferrara Sez. VII (N.S.) 50 (2004), 79–90. Zbl1144.35456
  12. [12] J.-F. Coulombel & P. Secchi, The stability of compressible vortex sheets in two space dimensions, Indiana Univ. Math. J.53 (2004), 941–1012. Zbl1068.35100
  13. [13] J. A. Fejer & J. W. Miles, On the stability of a plane vortex sheet with respect to three-dimensional disturbances, J. Fluid Mech.15 (1963), 335–336. Zbl0122.44201
  14. [14] J. Francheteau & G. Métivier, Existence de chocs faibles pour des systèmes quasi-linéaires hyperboliques multidimensionnels, Astérisque 268 (2000), 198. Zbl0996.35001
  15. [15] H. Freistühler, Some results on the stability of non-classical shock waves, J. Partial Differential Equations11 (1998), 25–38. Zbl0903.35006
  16. [16] O. Guès, Problème mixte hyperbolique quasi-linéaire caractéristique, Comm. Partial Differential Equations15 (1990), 595–645. Zbl0712.35061MR1070840
  17. [17] R. S. Hamilton, The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. (N.S.) 7 (1982), 65–222. Zbl0499.58003MR656198
  18. [18] E. Harabetian, A convergent series expansion for hyperbolic systems of conservation laws, Trans. Amer. Math. Soc.294 (1986), 383–424. Zbl0599.35103MR825712
  19. [19] L. Hörmander, Implicit function theorems, Stanford university lecture notes, 1977. 
  20. [20] T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Rational Mech. Anal.58 (1975), 181–205. Zbl0343.35056MR390516
  21. [21] P. D. Lax, Hyperbolic systems of conservation laws. II, Comm. Pure Appl. Math. 10 (1957), 537–566. Zbl0081.08803MR93653
  22. [22] J.-L. Lions & E. Magenes, Problèmes aux limites non homogènes et applications. Vol. 2, Travaux et Recherches Mathématiques, No. 18, Dunod, 1968. Zbl0165.10801
  23. [23] A. Majda, The existence of multidimensional shock fronts, Mem. Amer. Math. Soc. 43 (1983), 93. Zbl0517.76068MR699241
  24. [24] A. Majda, The stability of multidimensional shock fronts, Mem. Amer. Math. Soc. 41 (1983), 95. Zbl0506.76075MR683422
  25. [25] A. Majda, Compressible fluid flow and systems of conservation laws in several space variables, Applied Mathematical Sciences 53, Springer, 1984. Zbl0537.76001MR748308
  26. [26] A. Majda & S. Osher, Initial-boundary value problems for hyperbolic equations with uniformly characteristic boundary, Comm. Pure Appl. Math.28 (1975), 607–675. Zbl0314.35061
  27. [27] G. Métivier, Interaction de deux chocs pour un système de deux lois de conservation, en dimension deux d’espace, Trans. Amer. Math. Soc.296 (1986), 431–479. Zbl0619.35075MR846593
  28. [28] G. Métivier, Ondes soniques, J. Math. Pures Appl.70 (1991), 197–268. Zbl0728.35068MR1103034
  29. [29] G. Métivier, Stability of multidimensional shocks, in Advances in the theory of shock waves, Progr. Nonlinear Differential Equations Appl. 47, Birkhäuser, 2001, 25–103. Zbl1017.35075MR1842775
  30. [30] J. W. Miles, On the disturbed motion of a plane vortex sheet, J. Fluid Mech.4 (1958), 538–552. Zbl0084.42002MR97930
  31. [31] A. Mokrane, Problèmes mixtes hyperboliques non-linéaires, Thèse, Université de Rennes I, 1987. 
  32. [32] A. Morando & P. Trebeschi, Stability of contact discontinuities for the nonisentropic Euler equations in two-space dimensions, preprint, 2007. Zbl1140.35347
  33. [33] J. B. Rauch & F. J. I. Massey, Differentiability of solutions to hyperbolic initial-boundary value problems, Trans. Amer. Math. Soc.189 (1974), 303–318. Zbl0282.35014
  34. [34] S. Schochet, The compressible Euler equations in a bounded domain: existence of solutions and the incompressible limit, Comm. Math. Phys.104 (1986), 49–75. Zbl0612.76082MR834481
  35. [35] P. Secchi, The initial-boundary value problem for linear symmetric hyperbolic systems with characteristic boundary of constant multiplicity, Differential Integral Equations9 (1996), 671–700. Zbl0853.35067MR1401431
  36. [36] P. Secchi, Well-posedness of characteristic symmetric hyperbolic systems, Arch. Rational Mech. Anal.134 (1996), 155–197. Zbl0857.35080MR1405665
  37. [37] D. Serre, Systems of conservation laws. 2, Cambridge University Press, 2000, Geometric structures, oscillations, and initial-boundary value problems. Zbl0936.35001MR1775057
  38. [38] T. C. Sideris, Formation of singularities in three-dimensional compressible fluids, Comm. Math. Phys.101 (1985), 475–485. Zbl0606.76088MR815196
  39. [39] H. Beirão da Veiga, On the barotropic motion of compressible perfect fluids, Ann. Scuola Norm. Sup. Pisa Cl. Sci.8 (1981), 317–351. Zbl0477.76059MR623940

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.