Weakly stable multidimensional shocks

Jean-François Coulombel

Annales de l'I.H.P. Analyse non linéaire (2004)

  • Volume: 21, Issue: 4, page 401-443
  • ISSN: 0294-1449

How to cite

top

Coulombel, Jean-François. "Weakly stable multidimensional shocks." Annales de l'I.H.P. Analyse non linéaire 21.4 (2004): 401-443. <http://eudml.org/doc/78624>.

@article{Coulombel2004,
author = {Coulombel, Jean-François},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {symmetrizers; linear stability; isentropic gas dynamics},
language = {eng},
number = {4},
pages = {401-443},
publisher = {Elsevier},
title = {Weakly stable multidimensional shocks},
url = {http://eudml.org/doc/78624},
volume = {21},
year = {2004},
}

TY - JOUR
AU - Coulombel, Jean-François
TI - Weakly stable multidimensional shocks
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2004
PB - Elsevier
VL - 21
IS - 4
SP - 401
EP - 443
LA - eng
KW - symmetrizers; linear stability; isentropic gas dynamics
UR - http://eudml.org/doc/78624
ER -

References

top
  1. [1] Adams R.A, Sobolev Spaces, Academic Press, 1975. Zbl0314.46030MR450957
  2. [2] Alinhac S, Existence d'ondes de raréfaction pour des systèmes quasi-linéaires hyperboliques multidimensionnels, Comm. Partial Differential Equations14 (2) (1989) 173-230. Zbl0692.35063MR976971
  3. [3] Alinhac S, Blowup for Nonlinear Hyperbolic Equations, Birkhäuser, Boston, 1995. Zbl0820.35001MR1339762
  4. [4] Arnol'd V.I, Ordinary Differential Equations, Springer-Verlag, 1992. Zbl0744.34001MR1162307
  5. [5] Benzoni-Gavage S, Stability of multi-dimensional phase transitions in a van der Waals fluid, Nonlinear Anal.31 (1–2) (1998) 243-263. Zbl0928.76015MR1487544
  6. [6] Benzoni-Gavage S, Stability of subsonic planar phase boundaries in a van der Waals fluid, Arch. Rational Mech. Anal.150 (1) (1999) 23-55. Zbl0980.76023MR1738168
  7. [7] Benzoni-Gavage S, Rousset F, Serre D, Zumbrun K, Generic types and transitions in hyperbolic initial-boundary value problems, Proc. Roy. Soc. Edinburgh Sect. A132 (2002) 1073-1104. Zbl1029.35165MR1938714
  8. [8] S. Benzoni-Gavage, D. Serre, First order systems of hyperbolic partial differential equations with applications, in preparation. Zbl1113.35001
  9. [9] Blokhin A.M, Trakhinin Y.L, Stability of fast parallel MHD shock waves in polytropic gas, Eur. J. Mech. B Fluids18 (2) (1999) 197-211. Zbl0940.76019MR1681896
  10. [10] Bony J.M, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup. (4)14 (2) (1981) 209-246. Zbl0495.35024MR631751
  11. [11] Chazarain J, Piriou A, Introduction to the Theory of Linear Partial Differential Equations, North-Holland, 1982. Zbl0487.35002MR678605
  12. [12] Coulombel J.F, Weak stability of nonuniformly stable multidimensional shocks, SIAM J. Math. Anal.34 (1) (2002) 142-172. Zbl1029.35171MR1950830
  13. [13] Dafermos C.M, Hyperbolic Conservation Laws in Continuum Physics, Springer-Verlag, 2000. Zbl0940.35002MR1763936
  14. [14] Francheteau J, Métivier G, Existence de chocs faibles pour des systèmes quasi-linéaires hyperboliques multidimensionnels, Astérisque, vol. 268, 2000. Zbl0996.35001MR1787068
  15. [15] Freistühler H, Some results on the stability of non-classical shock waves, J. Partial Differential Equations111 (1) (1998) 25-38. Zbl0903.35006MR1618406
  16. [16] Freistühler H, Fries C, Rohde C, Existence, bifurcation, and stability of profiles for classical and non-classical shock waves, in: Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems, Springer, 2001, pp. 287-309, 814. Zbl1002.35087MR1850311
  17. [17] Hersh R, Mixed problems in several variables, J. Math. Mech.12 (1963) 317-334. Zbl0149.06602MR147790
  18. [18] Hirsch M.W, Differential Topology, Springer-Verlag, 1994. Zbl0356.57001MR1336822
  19. [19] Hörmander L, Lectures on Nonlinear Hyperbolic Differential Equations, Springer-Verlag, 1997. Zbl0881.35001MR1466700
  20. [20] Kato T, Perturbation Theory for Linear Operators, Springer-Verlag, 1976. Zbl0148.12601MR407617
  21. [21] Kreiss H.O, Initial boundary value problems for hyperbolic systems, Comm. Pure Appl. Math.23 (1970) 277-298. Zbl0193.06902MR437941
  22. [22] Lax P.D, Hyperbolic systems of conservation laws. II, Comm. Pure Appl. Math.10 (1957) 537-566. Zbl0081.08803MR93653
  23. [23] Majda A, The existence of multi-dimensional shock fronts, Mem. Amer. Math. Soc.43 (281) (1983). Zbl0517.76068MR699241
  24. [24] Majda A, The stability of multi-dimensional shock fronts, Mem. Amer. Math. Soc.41 (275) (1983). Zbl0506.76075MR683422
  25. [25] Majda A, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Springer-Verlag, 1984. Zbl0537.76001MR748308
  26. [26] Métivier G, The block structure condition for symmetric hyperbolic systems, Bull. London Math. Soc.32 (6) (2000) 689-702. Zbl1073.35525MR1781581
  27. [27] Métivier G, Stability of multidimensional shocks, in: Advances in the Theory of Shock Waves, Birkhäuser, 2001, pp. 25-103. Zbl1017.35075MR1842775
  28. [28] Meyer Y, Remarques sur un théorème de J.M. Bony, Suppl. Rend. Circ. Mat. Palermo Ser. II1 (1981) 1-20. Zbl0473.35021MR639462
  29. [29] A. Mokrane, Problèmes mixtes hyperboliques non-linéaires, Ph.D. Thesis, Université de Rennes I, 1987. 
  30. [30] Ohkubo T, Shirota T, On structures of certain L2-well-posed mixed problems for hyperbolic systems of first order, Hokkaido Math. J.4 (1975) 82-158. Zbl0304.35067MR380131
  31. [31] Ralston J.V, Note on a paper of Kreiss, Comm. Pure Appl. Math.24 (6) (1971) 759-762. Zbl0215.16802MR606239
  32. [32] Sablé-Tougeron M, Existence pour un problème de l'élastodynamique Neumann non linéaire en dimension 2, Arch. Rational Mech. Anal.101 (3) (1988) 261-292. Zbl0652.73019MR930125
  33. [33] Serre D, Systems of Conservation Laws. 1, Cambridge University Press, 1999. Zbl0930.35001MR1707279
  34. [34] Serre D, Systems of Conservation Laws. 2, Cambridge University Press, 2000. Zbl0936.35001MR1775057
  35. [35] Serre D, La transition vers l'instabilité pour les ondes de choc multi-dimensionnelles, Trans. Amer. Math. Soc.353 (12) (2001) 5071-5093. Zbl1078.35521MR1852095

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.