On the group of real analytic diffeomorphisms
Annales scientifiques de l'École Normale Supérieure (2009)
- Volume: 42, Issue: 4, page 601-651
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topTsuboi, Takashi. "On the group of real analytic diffeomorphisms." Annales scientifiques de l'École Normale Supérieure 42.4 (2009): 601-651. <http://eudml.org/doc/272143>.
@article{Tsuboi2009,
abstract = {The group of real analytic diffeomorphisms of a real analytic manifold is a rich group. It is dense in the group of smooth diffeomorphisms. Herman showed that for the $n$-dimensional torus, its identity component is a simple group. For $U(1)$ fibered manifolds, for manifolds admitting special semi-free $U(1)$ actions and for 2- or 3-dimensional manifolds with nontrivial $U(1)$ actions, we show that the identity component of the group of real analytic diffeomorphisms is a perfect group.},
author = {Tsuboi, Takashi},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {diffeomorphism groups; foliations; real analytic; rotations; $U(1)$ action; circle bundles},
language = {eng},
number = {4},
pages = {601-651},
publisher = {Société mathématique de France},
title = {On the group of real analytic diffeomorphisms},
url = {http://eudml.org/doc/272143},
volume = {42},
year = {2009},
}
TY - JOUR
AU - Tsuboi, Takashi
TI - On the group of real analytic diffeomorphisms
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2009
PB - Société mathématique de France
VL - 42
IS - 4
SP - 601
EP - 651
AB - The group of real analytic diffeomorphisms of a real analytic manifold is a rich group. It is dense in the group of smooth diffeomorphisms. Herman showed that for the $n$-dimensional torus, its identity component is a simple group. For $U(1)$ fibered manifolds, for manifolds admitting special semi-free $U(1)$ actions and for 2- or 3-dimensional manifolds with nontrivial $U(1)$ actions, we show that the identity component of the group of real analytic diffeomorphisms is a perfect group.
LA - eng
KW - diffeomorphism groups; foliations; real analytic; rotations; $U(1)$ action; circle bundles
UR - http://eudml.org/doc/272143
ER -
References
top- [1] V. I. Arnolʼd, Small denominators. I. Mapping the circle onto itself, Izv. Akad. Nauk SSSR Ser. Mat. 25 (1961), 21–86, (= Amer. Math. Soc. Translations 46 (1965), 213–284). Zbl0152.41905MR140699
- [2] A. Banyaga, The structure of classical diffeomorphism groups, Mathematics and its Applications 400, Kluwer Academic Publishers Group, 1997. Zbl0874.58005MR1445290
- [3] H. Cartan, Idéaux de fonctions analytiques de variables complexes, Ann. Sci. École Norm. Sup.61 (1944), 149–197. Zbl0035.17103MR14472
- [4] H. Cartan, Variétés analytiques réelles et variétés analytiques complexes, Bull. Soc. Math. France85 (1957), 77–99. Zbl0083.30502MR94830
- [5] D. B. A. Epstein, The simplicity of certain groups of homeomorphisms, Compositio Math.22 (1970), 165–173. Zbl0205.28201MR267589
- [6] H. Grauert, On Levi’s problem and the imbedding of real-analytic manifolds, Ann. of Math.68 (1958), 460–472. Zbl0108.07804MR98847
- [7] H. Grauert & R. Remmert, Coherent analytic sheaves, Grund. Math. Wiss. 265, Springer, 1984. Zbl0537.32001MR755331
- [8] R. C. Gunning, Introduction to holomorphic functions of several variables. Vol. II, The Wadsworth & Brooks/Cole Mathematics Series, 1990. Zbl0699.32001MR1057177
- [9] S. Haller & J. Teichmann, Smooth perfectness through decomposition of diffeomorphisms into fiber preserving ones, Ann. Global Anal. Geom.23 (2003), 53–63. Zbl1026.58007MR1952858
- [10] M.-R. Herman, Simplicité du groupe des difféomorphismes de classe , isotopes à l’identité, du tore de dimension , C. R. Acad. Sci. Paris273 (1971), 232–234. Zbl0217.49602MR287585
- [11] M.-R. Herman, Sur le groupe des difféomorphismes -analytiques du tore, in Differential topology and geometry (Proc. Colloq., Dijon, 1974), Springer Lecture Notes in Math. 484, 1975, 36–42. Zbl0321.58010MR420696
- [12] U. Hirsch, Some remarks on analytic foliations and analytic branched coverings, Math. Ann.248 (1980), 139–152. Zbl0456.57006MR573345
- [13] J. Mather, On the homology of Haefliger’s classifying space, C.I.M.E. Differential Topology (1976), 71–116. Zbl0469.57021
- [14] C. B. Morrey Jr., The analytic embedding of abstract real-analytic manifolds, Ann. of Math.68 (1958), 159–201. Zbl0090.38401MR99060
- [15] J. Moser, A rapidly convergent iteration method and non-linear partial differential equations. I and II, Ann. Scuola Norm. Sup. Pisa 20 (1966), 265–315 and 499–535. Zbl0144.18202MR199523
- [16] P. Orlik & F. Raymond, Actions of on 3-manifolds, in Proc. Conf. on Transformation Groups (New Orleans, La, 1967), Springer, 1968, 297–318. Zbl0172.25402MR263112
- [17] F. Raymond, Classification of the actions of the circle on -manifolds, Trans. Amer. Math. Soc.131 (1968), 51–78. Zbl0157.30602MR219086
- [18] H. L. Royden, The analytic approximation of differentiable mappings, Math. Ann.139 (1960), 171–179. Zbl0091.37003MR113229
- [19] C. L. Siegel, Iteration of analytic functions, Ann. of Math.43 (1942), 607–612. Zbl0061.14904MR7044
- [20] W. Thurston, Foliations and groups of diffeomorphisms, Bull. Amer. Math. Soc.80 (1974), 304–307. Zbl0295.57014MR339267
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.