On the group of real analytic diffeomorphisms

Takashi Tsuboi

Annales scientifiques de l'École Normale Supérieure (2009)

  • Volume: 42, Issue: 4, page 601-651
  • ISSN: 0012-9593

Abstract

top
The group of real analytic diffeomorphisms of a real analytic manifold is a rich group. It is dense in the group of smooth diffeomorphisms. Herman showed that for the n -dimensional torus, its identity component is a simple group. For U ( 1 ) fibered manifolds, for manifolds admitting special semi-free U ( 1 ) actions and for 2- or 3-dimensional manifolds with nontrivial U ( 1 ) actions, we show that the identity component of the group of real analytic diffeomorphisms is a perfect group.

How to cite

top

Tsuboi, Takashi. "On the group of real analytic diffeomorphisms." Annales scientifiques de l'École Normale Supérieure 42.4 (2009): 601-651. <http://eudml.org/doc/272143>.

@article{Tsuboi2009,
abstract = {The group of real analytic diffeomorphisms of a real analytic manifold is a rich group. It is dense in the group of smooth diffeomorphisms. Herman showed that for the $n$-dimensional torus, its identity component is a simple group. For $U(1)$ fibered manifolds, for manifolds admitting special semi-free $U(1)$ actions and for 2- or 3-dimensional manifolds with nontrivial $U(1)$ actions, we show that the identity component of the group of real analytic diffeomorphisms is a perfect group.},
author = {Tsuboi, Takashi},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {diffeomorphism groups; foliations; real analytic; rotations; $U(1)$ action; circle bundles},
language = {eng},
number = {4},
pages = {601-651},
publisher = {Société mathématique de France},
title = {On the group of real analytic diffeomorphisms},
url = {http://eudml.org/doc/272143},
volume = {42},
year = {2009},
}

TY - JOUR
AU - Tsuboi, Takashi
TI - On the group of real analytic diffeomorphisms
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2009
PB - Société mathématique de France
VL - 42
IS - 4
SP - 601
EP - 651
AB - The group of real analytic diffeomorphisms of a real analytic manifold is a rich group. It is dense in the group of smooth diffeomorphisms. Herman showed that for the $n$-dimensional torus, its identity component is a simple group. For $U(1)$ fibered manifolds, for manifolds admitting special semi-free $U(1)$ actions and for 2- or 3-dimensional manifolds with nontrivial $U(1)$ actions, we show that the identity component of the group of real analytic diffeomorphisms is a perfect group.
LA - eng
KW - diffeomorphism groups; foliations; real analytic; rotations; $U(1)$ action; circle bundles
UR - http://eudml.org/doc/272143
ER -

References

top
  1. [1] V. I. Arnolʼd, Small denominators. I. Mapping the circle onto itself, Izv. Akad. Nauk SSSR Ser. Mat. 25 (1961), 21–86, (= Amer. Math. Soc. Translations 46 (1965), 213–284). Zbl0152.41905MR140699
  2. [2] A. Banyaga, The structure of classical diffeomorphism groups, Mathematics and its Applications 400, Kluwer Academic Publishers Group, 1997. Zbl0874.58005MR1445290
  3. [3] H. Cartan, Idéaux de fonctions analytiques de n variables complexes, Ann. Sci. École Norm. Sup.61 (1944), 149–197. Zbl0035.17103MR14472
  4. [4] H. Cartan, Variétés analytiques réelles et variétés analytiques complexes, Bull. Soc. Math. France85 (1957), 77–99. Zbl0083.30502MR94830
  5. [5] D. B. A. Epstein, The simplicity of certain groups of homeomorphisms, Compositio Math.22 (1970), 165–173. Zbl0205.28201MR267589
  6. [6] H. Grauert, On Levi’s problem and the imbedding of real-analytic manifolds, Ann. of Math.68 (1958), 460–472. Zbl0108.07804MR98847
  7. [7] H. Grauert & R. Remmert, Coherent analytic sheaves, Grund. Math. Wiss. 265, Springer, 1984. Zbl0537.32001MR755331
  8. [8] R. C. Gunning, Introduction to holomorphic functions of several variables. Vol. II, The Wadsworth & Brooks/Cole Mathematics Series, 1990. Zbl0699.32001MR1057177
  9. [9] S. Haller & J. Teichmann, Smooth perfectness through decomposition of diffeomorphisms into fiber preserving ones, Ann. Global Anal. Geom.23 (2003), 53–63. Zbl1026.58007MR1952858
  10. [10] M.-R. Herman, Simplicité du groupe des difféomorphismes de classe C , isotopes à l’identité, du tore de dimension n , C. R. Acad. Sci. Paris273 (1971), 232–234. Zbl0217.49602MR287585
  11. [11] M.-R. Herman, Sur le groupe des difféomorphismes 𝐑 -analytiques du tore, in Differential topology and geometry (Proc. Colloq., Dijon, 1974), Springer Lecture Notes in Math. 484, 1975, 36–42. Zbl0321.58010MR420696
  12. [12] U. Hirsch, Some remarks on analytic foliations and analytic branched coverings, Math. Ann.248 (1980), 139–152. Zbl0456.57006MR573345
  13. [13] J. Mather, On the homology of Haefliger’s classifying space, C.I.M.E. Differential Topology (1976), 71–116. Zbl0469.57021
  14. [14] C. B. Morrey Jr., The analytic embedding of abstract real-analytic manifolds, Ann. of Math.68 (1958), 159–201. Zbl0090.38401MR99060
  15. [15] J. Moser, A rapidly convergent iteration method and non-linear partial differential equations. I and II, Ann. Scuola Norm. Sup. Pisa 20 (1966), 265–315 and 499–535. Zbl0144.18202MR199523
  16. [16] P. Orlik & F. Raymond, Actions of SO ( 2 ) on 3-manifolds, in Proc. Conf. on Transformation Groups (New Orleans, La, 1967), Springer, 1968, 297–318. Zbl0172.25402MR263112
  17. [17] F. Raymond, Classification of the actions of the circle on 3 -manifolds, Trans. Amer. Math. Soc.131 (1968), 51–78. Zbl0157.30602MR219086
  18. [18] H. L. Royden, The analytic approximation of differentiable mappings, Math. Ann.139 (1960), 171–179. Zbl0091.37003MR113229
  19. [19] C. L. Siegel, Iteration of analytic functions, Ann. of Math.43 (1942), 607–612. Zbl0061.14904MR7044
  20. [20] W. Thurston, Foliations and groups of diffeomorphisms, Bull. Amer. Math. Soc.80 (1974), 304–307. Zbl0295.57014MR339267

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.