Cluster ensembles, quantization and the dilogarithm
Vladimir V. Fock; Alexander B. Goncharov
Annales scientifiques de l'École Normale Supérieure (2009)
- Volume: 42, Issue: 6, page 865-930
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topFock, Vladimir V., and Goncharov, Alexander B.. "Cluster ensembles, quantization and the dilogarithm." Annales scientifiques de l'École Normale Supérieure 42.6 (2009): 865-930. <http://eudml.org/doc/272148>.
@article{Fock2009,
abstract = {A cluster ensemble is a pair $(\{\mathcal \{X\}\}, \{\mathcal \{A\}\})$ of positive spaces (i.e. varieties equipped with positive atlases), coming with an action of a symmetry group $\Gamma $. The space $\{\mathcal \{A\}\}$ is closely related to the spectrum of a cluster algebra [12]. The two spaces are related by a morphism $p: \{\mathcal \{A\}\} \rightarrow \{\mathcal \{X\}\}$. The space $\{\mathcal \{A\}\}$ is equipped with a closed $2$-form, possibly degenerate, and the space $\{\mathcal \{X\}\}$ has a Poisson structure. The map $p$ is compatible with these structures. The dilogarithm together with its motivic and quantum avatars plays a central role in the cluster ensemble structure. We define a non-commutative $q$-deformation of the $\{\mathcal \{X\}\}$-space. When $q$ is a root of unity the algebra of functions on the $q$-deformed $\{\mathcal \{X\}\}$-space has a large center, which includes the algebra of functions on the original $\{\mathcal \{X\}\}$-space.
The main example is provided by the pair of moduli spaces assigned in [7] to a topological surface $S$ with a finite set of points at the boundary and a split semisimple algebraic group $G$. It is an algebraic-geometric avatar of higher Teichmüller theory on $S$ related to $G$.
We suggest that there exists a duality between the $\{\mathcal \{A\}\}$ and $\{\mathcal \{X\}\}$ spaces. In particular, we conjecture that the tropical points of one of the spaces parametrise a basis in the space of functions on the Langlands dual space. We provide some evidence for the duality conjectures in the finite type case.},
author = {Fock, Vladimir V., Goncharov, Alexander B.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {cluster varieties; dilogarithm; quantization; Poisson structure; symplectic structure},
language = {eng},
number = {6},
pages = {865-930},
publisher = {Société mathématique de France},
title = {Cluster ensembles, quantization and the dilogarithm},
url = {http://eudml.org/doc/272148},
volume = {42},
year = {2009},
}
TY - JOUR
AU - Fock, Vladimir V.
AU - Goncharov, Alexander B.
TI - Cluster ensembles, quantization and the dilogarithm
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2009
PB - Société mathématique de France
VL - 42
IS - 6
SP - 865
EP - 930
AB - A cluster ensemble is a pair $({\mathcal {X}}, {\mathcal {A}})$ of positive spaces (i.e. varieties equipped with positive atlases), coming with an action of a symmetry group $\Gamma $. The space ${\mathcal {A}}$ is closely related to the spectrum of a cluster algebra [12]. The two spaces are related by a morphism $p: {\mathcal {A}} \rightarrow {\mathcal {X}}$. The space ${\mathcal {A}}$ is equipped with a closed $2$-form, possibly degenerate, and the space ${\mathcal {X}}$ has a Poisson structure. The map $p$ is compatible with these structures. The dilogarithm together with its motivic and quantum avatars plays a central role in the cluster ensemble structure. We define a non-commutative $q$-deformation of the ${\mathcal {X}}$-space. When $q$ is a root of unity the algebra of functions on the $q$-deformed ${\mathcal {X}}$-space has a large center, which includes the algebra of functions on the original ${\mathcal {X}}$-space.
The main example is provided by the pair of moduli spaces assigned in [7] to a topological surface $S$ with a finite set of points at the boundary and a split semisimple algebraic group $G$. It is an algebraic-geometric avatar of higher Teichmüller theory on $S$ related to $G$.
We suggest that there exists a duality between the ${\mathcal {A}}$ and ${\mathcal {X}}$ spaces. In particular, we conjecture that the tropical points of one of the spaces parametrise a basis in the space of functions on the Langlands dual space. We provide some evidence for the duality conjectures in the finite type case.
LA - eng
KW - cluster varieties; dilogarithm; quantization; Poisson structure; symplectic structure
UR - http://eudml.org/doc/272148
ER -
References
top- [1] A. Berenstein, S. Fomin & A. Zelevinsky, Cluster algebras. III. Upper bounds and double Bruhat cells, Duke Math. J. 126 (2005), 1–52. Zbl1135.16013MR2110627
- [2] A. Berenstein & A. Zelevinsky, Quantum cluster algebras, Adv. Math.195 (2005), 405–455. Zbl1124.20028MR2146350
- [3] J. W. Cannon, W. J. Floyd & W. R. Parry, Introductory notes on Richard Thompson’s groups, Enseign. Math.42 (1996), 215–256. Zbl0880.20027MR1426438
- [4] F. Chapoton, S. Fomin & A. Zelevinsky, Polytopal realizations of generalized associahedra, Canad. Math. Bull.45 (2002), 537–566. Zbl1018.52007MR1941227
- [5] V. V. Fock & A. B. Goncharov, Cluster -varieties, amalgamation, and Poisson-Lie groups, in Algebraic geometry and number theory, Progr. Math. 253, Birkhäuser, 2006, 27–68. Zbl1162.22014MR2263192
- [6] V. V. Fock & A. B. Goncharov, Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci.103 (2006), 1–211. Zbl1099.14025MR2233852
- [7] V. V. Fock & A. B. Goncharov, Dual Teichmüller and lamination spaces, in Handbook of Teichmüller theory. Vol. I, IRMA Lect. Math. Theor. Phys. 11, Eur. Math. Soc., Zürich, 2007, 647–684. Zbl1162.32009MR2349682
- [8] V. V. Fock & A. B. Goncharov, Cluster ensembles, quantization and the dilogarithm II: The intertwiner, Progress in Math.269 (2009), 513–524. Zbl1225.53070MR2641183
- [9] V. V. Fock & A. B. Goncharov, The quantum dilogarithm and representations of quantum cluster varieties, Invent. Math.175 (2009), 223–286. Zbl1183.14037MR2470108
- [10] V. V. Fock & A. B. Goncharov, Completions of cluster varieties, to appear. Zbl1183.14037
- [11] V. V. Fok & L. O. Chekhov, Quantum Teichmüller spaces, Teoret. Mat. Fiz.120 (1999), 511–528. Zbl0986.32007MR1737362
- [12] S. Fomin & A. Zelevinsky, Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15 (2002), 497–529 (electronic). Zbl1021.16017MR1887642
- [13] S. Fomin & A. Zelevinsky, The Laurent phenomenon, Adv. in Appl. Math.28 (2002), 119–144. Zbl1012.05012MR1888840
- [14] S. Fomin & A. Zelevinsky, Cluster algebras. II. Finite type classification, Invent. Math. 154 (2003), 63–121. Zbl1054.17024MR2004457
- [15] S. Fomin & A. Zelevinsky, -systems and generalized associahedra, Ann. of Math.158 (2003), 977–1018. Zbl1057.52003MR2031858
- [16] M. Gekhtman, M. Shapiro & A. Vainshtein, Cluster algebras and Poisson geometry, Mosc. Math. J.3 (2003), 899–934. Zbl1057.53064MR2078567
- [17] M. Gekhtman, M. Shapiro & A. Vainshtein, Cluster algebras and Weil-Petersson forms, Duke Math. J.127 (2005), 291–311. Zbl1079.53124MR2130414
- [18] A. B. Goncharov, Explicit construction of characteristic classes, in I. M. Gel’fand Seminar, Adv. Soviet Math. 16, Amer. Math. Soc., 1993, 169–210. Zbl0809.57016MR1237830
- [19] A. B. Goncharov, Geometry of configurations, polylogarithms, and motivic cohomology, Adv. Math.114 (1995), 197–318. Zbl0863.19004MR1348706
- [20] A. B. Goncharov, Pentagon relation for the quantum dilogarithm and quantized , in Geometry and dynamics of groups and spaces, Progr. Math. 265, Birkhäuser, 2008, 415–428. Zbl1139.81055MR2402412
- [21] M. Imbert, Sur l’isomorphisme du groupe de Richard Thompson avec le groupe de Ptolémée, in Geometric Galois actions, 2, London Math. Soc. Lecture Note Ser. 243, Cambridge Univ. Press, 1997, 313–324. Zbl0911.20031MR1653017
- [22] R. M. Kashaev, Quantization of Teichmüller spaces and the quantum dilogarithm, Lett. Math. Phys.43 (1998), 105–115. Zbl0897.57014MR1607296
- [23] J. Milnor, Introduction to algebraic -theory, Annals of Math. Studies 72, Princeton Univ. Press, 1971. Zbl0237.18005MR349811
- [24] R. C. Penner, The decorated Teichmüller space of punctured surfaces, Comm. Math. Phys.113 (1987), 299–339. Zbl0642.32012MR919235
- [25] P. Sherman & A. Zelevinsky, Positivity and canonical bases in rank 2 cluster algebras of finite and affine types, Mosc. Math. J.4 (2004), 947–974. Zbl1103.16018MR2124174
- [26] A. A. Suslin, of a field and the Bloch group, Proc. Steklov Inst. Math. N4 (1991), 217–239. Zbl0741.19005
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.