Hyperbolic geometry and moduli of real cubic surfaces
Daniel Allcock; James A. Carlson; Domingo Toledo
Annales scientifiques de l'École Normale Supérieure (2010)
- Volume: 43, Issue: 1, page 69-115
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topAllcock, Daniel, Carlson, James A., and Toledo, Domingo. "Hyperbolic geometry and moduli of real cubic surfaces." Annales scientifiques de l'École Normale Supérieure 43.1 (2010): 69-115. <http://eudml.org/doc/272149>.
@article{Allcock2010,
abstract = {Let $\mathcal \{M\}_0^\mathbb \{R\}$ be the moduli space of smooth real cubic surfaces. We show that each of its components admits a real hyperbolic structure. More precisely, one can remove some lower-dimensional geodesic subspaces from a real hyperbolic space $H^4$ and form the quotient by an arithmetic group to obtain an orbifold isomorphic to a component of the moduli space. There are five components. For each we describe the corresponding lattices in $\{\rm PO\}(4,1)$. We also derive several new and several old results on the topology of $\mathcal \{M\}_0^\mathbb \{R\}$. Let $\mathcal \{M\}_s^\mathbb \{R\}$ be the moduli space of real cubic surfaces that are stable in the sense of geometric invariant theory. We show that this space carries a hyperbolic structure whose restriction to $\mathcal \{M\}_0^\mathbb \{R\}$ is that just mentioned. The corresponding lattice in $\{\rm PO\}(4,1)$, for which we find an explicit fundamental domain, is nonarithmetic.},
author = {Allcock, Daniel, Carlson, James A., Toledo, Domingo},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {cubic surface; moduli; real agebraic geometry; hyperbolic geometry; arithmetic groups; Coxeter groups; uniformization},
language = {eng},
number = {1},
pages = {69-115},
publisher = {Société mathématique de France},
title = {Hyperbolic geometry and moduli of real cubic surfaces},
url = {http://eudml.org/doc/272149},
volume = {43},
year = {2010},
}
TY - JOUR
AU - Allcock, Daniel
AU - Carlson, James A.
AU - Toledo, Domingo
TI - Hyperbolic geometry and moduli of real cubic surfaces
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2010
PB - Société mathématique de France
VL - 43
IS - 1
SP - 69
EP - 115
AB - Let $\mathcal {M}_0^\mathbb {R}$ be the moduli space of smooth real cubic surfaces. We show that each of its components admits a real hyperbolic structure. More precisely, one can remove some lower-dimensional geodesic subspaces from a real hyperbolic space $H^4$ and form the quotient by an arithmetic group to obtain an orbifold isomorphic to a component of the moduli space. There are five components. For each we describe the corresponding lattices in ${\rm PO}(4,1)$. We also derive several new and several old results on the topology of $\mathcal {M}_0^\mathbb {R}$. Let $\mathcal {M}_s^\mathbb {R}$ be the moduli space of real cubic surfaces that are stable in the sense of geometric invariant theory. We show that this space carries a hyperbolic structure whose restriction to $\mathcal {M}_0^\mathbb {R}$ is that just mentioned. The corresponding lattice in ${\rm PO}(4,1)$, for which we find an explicit fundamental domain, is nonarithmetic.
LA - eng
KW - cubic surface; moduli; real agebraic geometry; hyperbolic geometry; arithmetic groups; Coxeter groups; uniformization
UR - http://eudml.org/doc/272149
ER -
References
top- [1] D. Allcock, J. A. Carlson & D. Toledo, The complex hyperbolic geometry of the moduli space of cubic surfaces, J. Algebraic Geom.11 (2002), 659–724. Zbl1080.14532MR1910264
- [2] D. Allcock, J. A. Carlson & D. Toledo, Real cubic surfaces and real hyperbolic geometry, C. R. Math. Acad. Sci. Paris337 (2003), 185–188. Zbl1055.14057MR2001132
- [3] D. Allcock, J. A. Carlson & D. Toledo, Nonarithmetic uniformization of some real moduli spaces, Geom. Dedicata 122 (2006), 159–169 and erratum 171. Zbl1122.14039MR2295547
- [4] D. Allcock, J. A. Carlson & D. Toledo, Hyperbolic geometry and the moduli space of real binary sextics, in Algebra and Geometry around Hypergeometric Functions (R. P. Holzapfel, A. M. Uludag & M. Yoshida, éds.), Progress in Math., Birkhäuser, 2007. Zbl1124.14019MR2306147
- [5] F. Apéry & M. Yoshida, Pentagonal structure of the configuration space of five points in the real projective line, Kyushu J. Math.52 (1998), 1–14. Zbl0919.52013MR1608989
- [6] M. R. Bridson & A. Haefliger, Metric spaces of non-positive curvature, Grund. Math. Wiss. 319, Springer, 1999. Zbl0988.53001MR1744486
- [7] J. W. Bruce & C. T. C. Wall, On the classification of cubic surfaces, J. London Math. Soc.19 (1979), 245–256. Zbl0393.14007MR533323
- [8] K. Chu, On the geometry of the moduli space of real binary octics, to appear. Zbl1231.32009MR2848997
- [9] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker & R. A. Wilson, Atlas of finite groups, Oxford Univ. Press, 1985. Zbl0568.20001MR827219
- [10] A. Degtyarev, I. Itenberg & V. M. Kharlamov, Real Enriques surfaces, Lecture Notes in Math. 1746, Springer, 2000. Zbl0963.14033MR1795406
- [11] P. Deligne & G. D. Mostow, Monodromy of hypergeometric functions and nonlattice integral monodromy, Publ. Math. I.H.É.S. 63 (1986), 5–89. Zbl0615.22008MR849651
- [12] S. Finashin & V. M. Kharlamov, Deformation classes of real four-dimensional cubic hypersurfaces, J. Algebraic Geom.17 (2008), 677–707. Zbl1225.14047MR2424924
- [13] S. Finashin & V. M. Kharlamov, On the deformation chirality of real cubic fourfolds, preprint arXiv:0804.4882. Zbl1226.14076MR2551997
- [14] M. Goresky & R. MacPherson, Stratified Morse theory, Ergebnisse Math. Grenzg. (3) 14, Springer, 1988. Zbl0639.14012MR932724
- [15] M. Gromov & I. Piatetski-Shapiro, Nonarithmetic groups in Lobachevsky spaces, Publ. Math. I.H.É.S. 66 (1988), 93–103. Zbl0649.22007MR932135
- [16] B. H. Gross & J. Harris, Real algebraic curves, Ann. Sci. École Norm. Sup.14 (1981), 157–182. Zbl0533.14011MR631748
- [17] P. de la Harpe, An invitation to Coxeter groups, in Group theory from a geometrical viewpoint (Trieste, 1990), World Sci. Publ., River Edge, NJ, 1991, 193–253. Zbl0840.20033MR1170367
- [18] D. Hilbert, Über die volle Invariantensysteme, Math. Annalen 42 (1893), 313–370, English transl. Hilbert’s invariant theory papers in Lie Groups: History, Frontiers and Applications, VIII, Math Sci Press, Brookline, Mass., 1978. JFM25.0173.01
- [19] V. M. Kharlamov, Topological types of non-singular surfaces of degree in , Funct. Anal. Appl.10 (1976), 55–68. Zbl0362.14013
- [20] V. M. Kharlamov, On the classification of nonsingular surfaces of degree in with respect to rigid isotopies, Funktsional. Anal. i Prilozhen.18 (1984), 49–56. Zbl0577.14014MR739089
- [21] F. Klein, Über Flächen dritter Ordnung, Math. Ann. 6 (1873), 551–581, also in Gesammelte Mathematische Abhandlungen, II, 11–62, Springer, 1922. MR1509833JFM06.0386.02
- [22] V. A. Krasnov, Rigid isotopy classification of real three-dimensional cubics, Izv. Math.70 (2006), 731–768. Zbl1222.14125MR2261172
- [23] R. Laza, The moduli space of cubic fourfolds, J. Algebraic Geom.18 (2009), 511–545. Zbl1169.14026MR2496456
- [24] E. Looijenga, The period map for cubic fourfolds, Invent. Math.177 (2009), 213–233. Zbl1177.32010MR2507640
- [25] Y. I. Manin, Cubic forms, second éd., North-Holland Mathematical Library 4, North-Holland Publishing Co., 1986. Zbl0582.14010MR833513
- [26] B. Maskit, Kleinian groups, Grund. Math. Wiss. 287, Springer, 1988. Zbl0627.30039MR959135
- [27] S. Moriceau, Surfaces de degré 4 avec un point double non dégénéré dans l’espace projectif réel de dimension 3, Thèse de doctorat, Université de Rennes I, 2004.
- [28] I. Newton, Enumeratio linearum tertii ordinis, in Opticks, 1704, 139–162.
- [29] I. Newton, The mathematical papers of Isaac Newton. Vol. II: 1667–1670, edited by D. T. Whiteside, Cambridge Univ. Press, 1968. Zbl0157.00701MR228320
- [30] V. V. Nikulin, Integral symmetric bilinear forms and some of their applications, Math. USSR Izvestiya14 (1980), 103–167. Zbl0427.10014MR525944
- [31] L. Schläfli, An attempt to determine the twenty-seven lines upon a surface of the third order, and to divide such surfaces into species in reference to the reality of the lines upon the surface, Quart. J. Math. 2 (1858), 55–65 and 110–120, also in Gesammelte Mathematische Abhandlungen, II, 198–216, Birkhäuser, 1953.
- [32] L. Schläfli, On the distribution of surfaces of the third order into species, in reference to the absence or presence of singular points, and the reality of their lines, Philos. Trans. Roy. Soc. London 153 (1863), 193–241, also in Gesammelte Mathematische Abhandlungen, II, 304–360, 1953.
- [33] L. Schläfli, Quand’è che dalla superficie generale di terzo ordine si stacca una patre che non sia realmente segata a ogni piano reale?, Ann. Mat. pura appl. 5 (1871–1873), 289–295, Corezzioni, ibid. 7 (1875/76) , 193–196, also in Gesammelte Mathematische Abhandlungen, III, 229–234, 235–237, Birkhäuser, 1956. JFM05.0321.01
- [34] B. Segre, The Non-singular Cubic Surfaces, Oxford Univ. Press, 1942. Zbl0061.36701MR8171JFM68.0358.01
- [35] W. P. Thurston, The geometry and topology of three-manifolds, Princeton University notes, http://www.msri.org/publications/books/gt3m, 1980.
- [36] W. P. Thurston, Shapes of polyhedra and triangulations of the sphere, in The Epstein birthday schrift, Geom. Topol. Monogr. 1, Coventry, 1998, 511–549. Zbl0931.57010MR1668340
- [37] E. B. Vinberg, Discrete linear groups that are generated by reflections, Izv. Akad. Nauk SSSR Ser. Mat.35 (1971), 1072–1112. Zbl0247.20054MR302779
- [38] E. B. Vinberg, The groups of units of certain quadratic forms, Mat. Sb. (N.S.) 87 (1972), 17–35. Zbl0252.20054MR295193
- [39] E. B. Vinberg, Some arithmetical discrete groups in Lobačevskiĭ spaces, in Discrete subgroups of Lie groups and applications to moduli (Internat. Colloq., Bombay, 1973), Oxford Univ. Press, 1975, 323–348. Zbl0316.10013MR422505
- [40] M. Yoshida, The real loci of the configuration space of six points on the projective line and a Picard modular -fold, Kumamoto J. Math.11 (1998), 43–67. Zbl0920.52003MR1623240
- [41] M. Yoshida, A hyperbolic structure on the real locus of the moduli space of marked cubic surfaces, Topology40 (2001), 469–473. Zbl1062.14045MR1838991
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.