Hyperbolic geometry and moduli of real cubic surfaces

Daniel Allcock; James A. Carlson; Domingo Toledo

Annales scientifiques de l'École Normale Supérieure (2010)

  • Volume: 43, Issue: 1, page 69-115
  • ISSN: 0012-9593

Abstract

top
Let 0 be the moduli space of smooth real cubic surfaces. We show that each of its components admits a real hyperbolic structure. More precisely, one can remove some lower-dimensional geodesic subspaces from a real hyperbolic space H 4 and form the quotient by an arithmetic group to obtain an orbifold isomorphic to a component of the moduli space. There are five components. For each we describe the corresponding lattices in PO ( 4 , 1 ) . We also derive several new and several old results on the topology of 0 . Let s be the moduli space of real cubic surfaces that are stable in the sense of geometric invariant theory. We show that this space carries a hyperbolic structure whose restriction to 0 is that just mentioned. The corresponding lattice in PO ( 4 , 1 ) , for which we find an explicit fundamental domain, is nonarithmetic.

How to cite

top

Allcock, Daniel, Carlson, James A., and Toledo, Domingo. "Hyperbolic geometry and moduli of real cubic surfaces." Annales scientifiques de l'École Normale Supérieure 43.1 (2010): 69-115. <http://eudml.org/doc/272149>.

@article{Allcock2010,
abstract = {Let $\mathcal \{M\}_0^\mathbb \{R\}$ be the moduli space of smooth real cubic surfaces. We show that each of its components admits a real hyperbolic structure. More precisely, one can remove some lower-dimensional geodesic subspaces from a real hyperbolic space $H^4$ and form the quotient by an arithmetic group to obtain an orbifold isomorphic to a component of the moduli space. There are five components. For each we describe the corresponding lattices in $\{\rm PO\}(4,1)$. We also derive several new and several old results on the topology of $\mathcal \{M\}_0^\mathbb \{R\}$. Let $\mathcal \{M\}_s^\mathbb \{R\}$ be the moduli space of real cubic surfaces that are stable in the sense of geometric invariant theory. We show that this space carries a hyperbolic structure whose restriction to $\mathcal \{M\}_0^\mathbb \{R\}$ is that just mentioned. The corresponding lattice in $\{\rm PO\}(4,1)$, for which we find an explicit fundamental domain, is nonarithmetic.},
author = {Allcock, Daniel, Carlson, James A., Toledo, Domingo},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {cubic surface; moduli; real agebraic geometry; hyperbolic geometry; arithmetic groups; Coxeter groups; uniformization},
language = {eng},
number = {1},
pages = {69-115},
publisher = {Société mathématique de France},
title = {Hyperbolic geometry and moduli of real cubic surfaces},
url = {http://eudml.org/doc/272149},
volume = {43},
year = {2010},
}

TY - JOUR
AU - Allcock, Daniel
AU - Carlson, James A.
AU - Toledo, Domingo
TI - Hyperbolic geometry and moduli of real cubic surfaces
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2010
PB - Société mathématique de France
VL - 43
IS - 1
SP - 69
EP - 115
AB - Let $\mathcal {M}_0^\mathbb {R}$ be the moduli space of smooth real cubic surfaces. We show that each of its components admits a real hyperbolic structure. More precisely, one can remove some lower-dimensional geodesic subspaces from a real hyperbolic space $H^4$ and form the quotient by an arithmetic group to obtain an orbifold isomorphic to a component of the moduli space. There are five components. For each we describe the corresponding lattices in ${\rm PO}(4,1)$. We also derive several new and several old results on the topology of $\mathcal {M}_0^\mathbb {R}$. Let $\mathcal {M}_s^\mathbb {R}$ be the moduli space of real cubic surfaces that are stable in the sense of geometric invariant theory. We show that this space carries a hyperbolic structure whose restriction to $\mathcal {M}_0^\mathbb {R}$ is that just mentioned. The corresponding lattice in ${\rm PO}(4,1)$, for which we find an explicit fundamental domain, is nonarithmetic.
LA - eng
KW - cubic surface; moduli; real agebraic geometry; hyperbolic geometry; arithmetic groups; Coxeter groups; uniformization
UR - http://eudml.org/doc/272149
ER -

References

top
  1. [1] D. Allcock, J. A. Carlson & D. Toledo, The complex hyperbolic geometry of the moduli space of cubic surfaces, J. Algebraic Geom.11 (2002), 659–724. Zbl1080.14532MR1910264
  2. [2] D. Allcock, J. A. Carlson & D. Toledo, Real cubic surfaces and real hyperbolic geometry, C. R. Math. Acad. Sci. Paris337 (2003), 185–188. Zbl1055.14057MR2001132
  3. [3] D. Allcock, J. A. Carlson & D. Toledo, Nonarithmetic uniformization of some real moduli spaces, Geom. Dedicata 122 (2006), 159–169 and erratum 171. Zbl1122.14039MR2295547
  4. [4] D. Allcock, J. A. Carlson & D. Toledo, Hyperbolic geometry and the moduli space of real binary sextics, in Algebra and Geometry around Hypergeometric Functions (R. P. Holzapfel, A. M. Uludag & M. Yoshida, éds.), Progress in Math., Birkhäuser, 2007. Zbl1124.14019MR2306147
  5. [5] F. Apéry & M. Yoshida, Pentagonal structure of the configuration space of five points in the real projective line, Kyushu J. Math.52 (1998), 1–14. Zbl0919.52013MR1608989
  6. [6] M. R. Bridson & A. Haefliger, Metric spaces of non-positive curvature, Grund. Math. Wiss. 319, Springer, 1999. Zbl0988.53001MR1744486
  7. [7] J. W. Bruce & C. T. C. Wall, On the classification of cubic surfaces, J. London Math. Soc.19 (1979), 245–256. Zbl0393.14007MR533323
  8. [8] K. Chu, On the geometry of the moduli space of real binary octics, to appear. Zbl1231.32009MR2848997
  9. [9] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker & R. A. Wilson, Atlas of finite groups, Oxford Univ. Press, 1985. Zbl0568.20001MR827219
  10. [10] A. Degtyarev, I. Itenberg & V. M. Kharlamov, Real Enriques surfaces, Lecture Notes in Math. 1746, Springer, 2000. Zbl0963.14033MR1795406
  11. [11] P. Deligne & G. D. Mostow, Monodromy of hypergeometric functions and nonlattice integral monodromy, Publ. Math. I.H.É.S. 63 (1986), 5–89. Zbl0615.22008MR849651
  12. [12] S. Finashin & V. M. Kharlamov, Deformation classes of real four-dimensional cubic hypersurfaces, J. Algebraic Geom.17 (2008), 677–707. Zbl1225.14047MR2424924
  13. [13] S. Finashin & V. M. Kharlamov, On the deformation chirality of real cubic fourfolds, preprint arXiv:0804.4882. Zbl1226.14076MR2551997
  14. [14] M. Goresky & R. MacPherson, Stratified Morse theory, Ergebnisse Math. Grenzg. (3) 14, Springer, 1988. Zbl0639.14012MR932724
  15. [15] M. Gromov & I. Piatetski-Shapiro, Nonarithmetic groups in Lobachevsky spaces, Publ. Math. I.H.É.S. 66 (1988), 93–103. Zbl0649.22007MR932135
  16. [16] B. H. Gross & J. Harris, Real algebraic curves, Ann. Sci. École Norm. Sup.14 (1981), 157–182. Zbl0533.14011MR631748
  17. [17] P. de la Harpe, An invitation to Coxeter groups, in Group theory from a geometrical viewpoint (Trieste, 1990), World Sci. Publ., River Edge, NJ, 1991, 193–253. Zbl0840.20033MR1170367
  18. [18] D. Hilbert, Über die volle Invariantensysteme, Math. Annalen 42 (1893), 313–370, English transl. Hilbert’s invariant theory papers in Lie Groups: History, Frontiers and Applications, VIII, Math Sci Press, Brookline, Mass., 1978. JFM25.0173.01
  19. [19] V. M. Kharlamov, Topological types of non-singular surfaces of degree 4 in R P 3 , Funct. Anal. Appl.10 (1976), 55–68. Zbl0362.14013
  20. [20] V. M. Kharlamov, On the classification of nonsingular surfaces of degree 4 in 𝐑 P 3 with respect to rigid isotopies, Funktsional. Anal. i Prilozhen.18 (1984), 49–56. Zbl0577.14014MR739089
  21. [21] F. Klein, Über Flächen dritter Ordnung, Math. Ann. 6 (1873), 551–581, also in Gesammelte Mathematische Abhandlungen, II, 11–62, Springer, 1922. MR1509833JFM06.0386.02
  22. [22] V. A. Krasnov, Rigid isotopy classification of real three-dimensional cubics, Izv. Math.70 (2006), 731–768. Zbl1222.14125MR2261172
  23. [23] R. Laza, The moduli space of cubic fourfolds, J. Algebraic Geom.18 (2009), 511–545. Zbl1169.14026MR2496456
  24. [24] E. Looijenga, The period map for cubic fourfolds, Invent. Math.177 (2009), 213–233. Zbl1177.32010MR2507640
  25. [25] Y. I. Manin, Cubic forms, second éd., North-Holland Mathematical Library 4, North-Holland Publishing Co., 1986. Zbl0582.14010MR833513
  26. [26] B. Maskit, Kleinian groups, Grund. Math. Wiss. 287, Springer, 1988. Zbl0627.30039MR959135
  27. [27] S. Moriceau, Surfaces de degré 4 avec un point double non dégénéré dans l’espace projectif réel de dimension 3, Thèse de doctorat, Université de Rennes I, 2004. 
  28. [28] I. Newton, Enumeratio linearum tertii ordinis, in Opticks, 1704, 139–162. 
  29. [29] I. Newton, The mathematical papers of Isaac Newton. Vol. II: 1667–1670, edited by D. T. Whiteside, Cambridge Univ. Press, 1968. Zbl0157.00701MR228320
  30. [30] V. V. Nikulin, Integral symmetric bilinear forms and some of their applications, Math. USSR Izvestiya14 (1980), 103–167. Zbl0427.10014MR525944
  31. [31] L. Schläfli, An attempt to determine the twenty-seven lines upon a surface of the third order, and to divide such surfaces into species in reference to the reality of the lines upon the surface, Quart. J. Math. 2 (1858), 55–65 and 110–120, also in Gesammelte Mathematische Abhandlungen, II, 198–216, Birkhäuser, 1953. 
  32. [32] L. Schläfli, On the distribution of surfaces of the third order into species, in reference to the absence or presence of singular points, and the reality of their lines, Philos. Trans. Roy. Soc. London 153 (1863), 193–241, also in Gesammelte Mathematische Abhandlungen, II, 304–360, 1953. 
  33. [33] L. Schläfli, Quand’è che dalla superficie generale di terzo ordine si stacca una patre che non sia realmente segata a ogni piano reale?, Ann. Mat. pura appl. 5 (1871–1873), 289–295, Corezzioni, ibid. 7 (1875/76) , 193–196, also in Gesammelte Mathematische Abhandlungen, III, 229–234, 235–237, Birkhäuser, 1956. JFM05.0321.01
  34. [34] B. Segre, The Non-singular Cubic Surfaces, Oxford Univ. Press, 1942. Zbl0061.36701MR8171JFM68.0358.01
  35. [35] W. P. Thurston, The geometry and topology of three-manifolds, Princeton University notes, http://www.msri.org/publications/books/gt3m, 1980. 
  36. [36] W. P. Thurston, Shapes of polyhedra and triangulations of the sphere, in The Epstein birthday schrift, Geom. Topol. Monogr. 1, Coventry, 1998, 511–549. Zbl0931.57010MR1668340
  37. [37] E. B. Vinberg, Discrete linear groups that are generated by reflections, Izv. Akad. Nauk SSSR Ser. Mat.35 (1971), 1072–1112. Zbl0247.20054MR302779
  38. [38] E. B. Vinberg, The groups of units of certain quadratic forms, Mat. Sb. (N.S.) 87 (1972), 17–35. Zbl0252.20054MR295193
  39. [39] E. B. Vinberg, Some arithmetical discrete groups in Lobačevskiĭ spaces, in Discrete subgroups of Lie groups and applications to moduli (Internat. Colloq., Bombay, 1973), Oxford Univ. Press, 1975, 323–348. Zbl0316.10013MR422505
  40. [40] M. Yoshida, The real loci of the configuration space of six points on the projective line and a Picard modular 3 -fold, Kumamoto J. Math.11 (1998), 43–67. Zbl0920.52003MR1623240
  41. [41] M. Yoshida, A hyperbolic structure on the real locus of the moduli space of marked cubic surfaces, Topology40 (2001), 469–473. Zbl1062.14045MR1838991

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.