Monodromy of hypergeometric functions and non-lattice integral monodromy

Pierre Deligne; G. D. Mostow

Publications Mathématiques de l'IHÉS (1986)

  • Volume: 63, page 5-89
  • ISSN: 0073-8301

How to cite

top

Deligne, Pierre, and Mostow, G. D.. "Monodromy of hypergeometric functions and non-lattice integral monodromy." Publications Mathématiques de l'IHÉS 63 (1986): 5-89. <http://eudml.org/doc/104012>.

@article{Deligne1986,
author = {Deligne, Pierre, Mostow, G. D.},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {hypergeometric functions; arithmetic monodromy group; lattice in projective unitary group; complex unit ball with hermitian metric; orbits of group of isometries; monodromy of integrals; compactification; minimal covering space},
language = {eng},
pages = {5-89},
publisher = {Institut des Hautes Études Scientifiques},
title = {Monodromy of hypergeometric functions and non-lattice integral monodromy},
url = {http://eudml.org/doc/104012},
volume = {63},
year = {1986},
}

TY - JOUR
AU - Deligne, Pierre
AU - Mostow, G. D.
TI - Monodromy of hypergeometric functions and non-lattice integral monodromy
JO - Publications Mathématiques de l'IHÉS
PY - 1986
PB - Institut des Hautes Études Scientifiques
VL - 63
SP - 5
EP - 89
LA - eng
KW - hypergeometric functions; arithmetic monodromy group; lattice in projective unitary group; complex unit ball with hermitian metric; orbits of group of isometries; monodromy of integrals; compactification; minimal covering space
UR - http://eudml.org/doc/104012
ER -

References

top
  1. [1] APPEL, P., a) CR Acad. Sci., Paris, 16 février 1880 ; b) Sur les fonctions hygergéométriques de deux variables, J. de Math., 3e ser., VIII (1882), 173-216. 
  2. [2] BOREL, A., a) Density properties for certain subgroups of semi-simple groups without compact components, Ann. of Math., 72 (1960), 179-188 ; b) Reduction theory for arithmetic groups, Proc. Symposia in Pure Math., IX (1966), 20-25. Zbl0094.24901MR23 #A964
  3. [3] BOREL, A.-Harish Chandra, Arithmetic subgroups of algebraic groups, Ann. of Math., 75 (1962), 485-535. Zbl0107.14804MR26 #5081
  4. [4] BOURBAKI, N., Groupes et Algèbres de Lie, chap. V, Paris, Herman, 1968. Zbl0186.33001
  5. [5] EULER, L., “Specimen transformations singularis serierum”, Sept. 3, 1778, Nova Acta Petropolitana, XII (1801), 58-78. 
  6. [6] FRICKE, R., and KLEIN, F., Vorlesungen über die Theorie der Automorphen Functionen, Bd. I, Leipzig, Teubner, 1897. JFM28.0334.01
  7. [7] FOX, R. H., Covering spaces with singularities, in Lefschetz Symposium, Princeton Univ. Press (1957), 243-262. Zbl0079.16505MR23 #A626
  8. [8] FUCHS, L., Zur Theorie der linearen Differential gleichungen mit verändlerichen Coeffizienten, J. r. und angew. Math., 66 (1866), 121-160. 
  9. [9] HERMITE, C., Sur quelques équations différentielles linéaires, J. r. und angew. Math., 79 (1875), 111-158. 
  10. [10] HOCHSCHILD, G. P., The Structure of Lie Groups, Holden-Day, San Francisco, 1965. Zbl0131.02702MR34 #7696
  11. [11] KNESER, M., Strong approximation, Proc. of Symposia in Pure Math., IX (1966), 187-196. Zbl0201.37904MR35 #4225
  12. [12] LAURICELLA, Sulle funzioni ipergeometriche a piu variabili, Rend. di Palermo, VII (1893), 111-158. JFM25.0756.01
  13. [13] LE VAVASSEUR, R., Sur le système d'équations aux dérivées partielles simultanées auxquelles satisfait la série hypergéométrique à deux variables, J. Fac. Sci. Toulouse, VII (1896), 1-205. JFM25.0608.02
  14. [14] MOSTOW, G. D., a) Existence of nonarithmetic monodromy groups, Proc. Nat. Acad. Sci., 78 (1981), 5948-5950 ; b) Generalized Picard lattices arising from half-integral conditions, Publ. Math. I.H.E.S., this volume, 91-106. Zbl0551.32024MR86b:22020
  15. [15] MUMFORD, D., Geometric Invariant Theory, Berlin, Springer, 1965. Zbl0147.39304MR35 #5451
  16. [16] PICARD, E., a) Sur une extension aux fonctions de deux variables du problème de Riemann relatif aux fonctions hypergéométriques, Ann. ENS, 10 (1881), 305-322 ; b) Sur les fonctions hyperfuchsiennes provenant des séries hypergéométriques de deux variables, Ann. ENS, III, 2 (1885), 357-384 ; c) Id., Bull. Soc. Math. Fr., 15 (1887), 148-152. JFM19.0429.01
  17. [17] POCHHAMMER, L., Ueber hypergeometrische Functionen höherer Ordnung, J. r. und angew. Math., 71 (1870), 316-362. JFM02.0265.01
  18. [18] RIEMANN, B., Beiträge zur Theorie der durch die Gauss'sche Reihe F(α, β, γ, χ) darstellbaren Functionen, Abh. Kon. Ges. d. Wiss zu Göttingen, VII (1857), Math. Classe, A-22. 
  19. [19] SCHAFLI, Ueber die Gauss'sche hypergeometrische Reihe, Math. Ann., III (1871), 286-295. JFM02.0122.02
  20. [20] SCHWARZ, H. A., Ueber diejenigen Fälle in welchen die Gauss'sche hypergeometrische Reihe eine algebraisches Function ihres vierten Elementes darstellt, J. r. und angew. Math., 75 (1873), 292-335. JFM05.0146.03
  21. [21] TAKEUCHI, K., Commensurability classes of arithmetic discrete triangle groups, J. Fac. Sci. Univ. Tokyo, 24 (1977), 201-212. Zbl0365.20055MR57 #3077
  22. [22] TERADA, T., Problème de Riemann et fonctions automorphes provenant des fonctions hypergéometriques de plusieurs variables, J. Math. Kyoto Univ., 13 (1973), 557-578. Zbl0279.32022MR58 #1299
  23. [23] TITS, J., Classification of algebraic semi-simple groups, Proc. of Symposia in Pure Math., IX (1966), 33-62. Zbl0238.20052MR37 #309
  24. [24] WHITTAKER, E. T., and WATSON, G. N., A course in modern analysis, Cambridge, University Press, 1962. 
  25. [25] ZUCKER, S., Hodge theory with degenerating coefficients, I, Ann. of Math., 109 (1979), 415-476. Zbl0446.14002MR81a:14002

Citations in EuDML Documents

top
  1. G. D. Mostow, Generalized Picard lattices arising from half-integral conditions
  2. Michael Kapovich, John J. Millson, The relative deformation theory of representations and flat connections and deformations of linkages in constant curvature spaces
  3. Jean-Claude Hausmann, Allen Knutson, The cohomology ring of polygon spaces
  4. Selim Ghazouani, [unknown]
  5. Keiji Matsumoto, On modular functions in 2 variables attached to a family of hyperelliptic curves of genus 3
  6. Slavyana Geninska, On arithmetic Fuchsian groups and their characterizations
  7. Keiji Matsumoto, Masaaki Yoshida, Configuration space of 8 points on the projective line and a 5-dimensional Picard modular group
  8. Michael Gromov, Richard Schoen, Harmonic maps into singular spaces and p -adic superrigidity for lattices in groups of rank one
  9. Julien Paupert, Applications moment, polygones de configurations et groupes discrets de réflexions complexes dans P U ( 2 , 1 )
  10. Daniel Allcock, James A. Carlson, Domingo Toledo, Hyperbolic geometry and moduli of real cubic surfaces

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.