Hofer’s metrics and boundary depth
Annales scientifiques de l'École Normale Supérieure (2013)
- Volume: 46, Issue: 1, page 57-129
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topUsher, Michael. "Hofer’s metrics and boundary depth." Annales scientifiques de l'École Normale Supérieure 46.1 (2013): 57-129. <http://eudml.org/doc/272152>.
@article{Usher2013,
abstract = {We show that if $(M,\omega )$ is a closed symplectic manifold which admits a nontrivial Hamiltonian vector field all of whose contractible closed orbits are constant, then Hofer’s metric on the group of Hamiltonian diffeomorphisms of $(M,\omega )$ has infinite diameter, and indeed admits infinite-dimensional quasi-isometrically embedded normed vector spaces. A similar conclusion applies to Hofer’s metric on various spaces of Lagrangian submanifolds, including those Hamiltonian-isotopic to the diagonal in $M\times M$ when $M$ satisfies the above dynamical condition. To prove this, we use the properties of a Floer-theoretic quantity called the boundary depth, which measures the nontriviality of the boundary operator on the Floer complex in a way that encodes robust symplectic-topological information.},
author = {Usher, Michael},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Hofer metric; hamiltonian diffeomorphism; lagrangian submanifold; Floer complex},
language = {eng},
number = {1},
pages = {57-129},
publisher = {Société mathématique de France},
title = {Hofer’s metrics and boundary depth},
url = {http://eudml.org/doc/272152},
volume = {46},
year = {2013},
}
TY - JOUR
AU - Usher, Michael
TI - Hofer’s metrics and boundary depth
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2013
PB - Société mathématique de France
VL - 46
IS - 1
SP - 57
EP - 129
AB - We show that if $(M,\omega )$ is a closed symplectic manifold which admits a nontrivial Hamiltonian vector field all of whose contractible closed orbits are constant, then Hofer’s metric on the group of Hamiltonian diffeomorphisms of $(M,\omega )$ has infinite diameter, and indeed admits infinite-dimensional quasi-isometrically embedded normed vector spaces. A similar conclusion applies to Hofer’s metric on various spaces of Lagrangian submanifolds, including those Hamiltonian-isotopic to the diagonal in $M\times M$ when $M$ satisfies the above dynamical condition. To prove this, we use the properties of a Floer-theoretic quantity called the boundary depth, which measures the nontriviality of the boundary operator on the Floer complex in a way that encodes robust symplectic-topological information.
LA - eng
KW - Hofer metric; hamiltonian diffeomorphism; lagrangian submanifold; Floer complex
UR - http://eudml.org/doc/272152
ER -
References
top- [1] W. Ballmann & P. Eberlein, Fundamental groups of manifolds of nonpositive curvature, J. Differential Geom.25 (1987), 1–22. Zbl0701.53070MR873453
- [2] J.-F. Barraud & O. Cornea, Lagrangian intersections and the Serre spectral sequence, Ann. of Math.166 (2007), 657–722. Zbl1141.53078MR2373371
- [3] A. Bertram & M. Thaddeus, On the quantum cohomology of a symmetric product of an algebraic curve, Duke Math. J.108 (2001), 329–362. Zbl1050.14052MR1833394
- [4] P. Biran & O. Cornea, Quantum structures for Lagrangian submanifolds, preprint arXiv:0708.4221. Zbl1180.53078
- [5] P. Biran, L. Polterovich & D. Salamon, Propagation in Hamiltonian dynamics and relative symplectic homology, Duke Math. J.119 (2003), 65–118. Zbl1034.53089MR1991647
- [6] Y. V. Chekanov, Lagrangian intersections, symplectic energy, and areas of holomorphic curves, Duke Math. J.95 (1998), 213–226. Zbl0977.53077MR1646550
- [7] Y. V. Chekanov, Invariant Finsler metrics on the space of Lagrangian embeddings, Math. Z.234 (2000), 605–619. Zbl0985.37052MR1774099
- [8] O. Cornea & F. Lalonde, Cluster homology, preprint arXiv:math/0508345.
- [9] M. Entov & L. Polterovich, Calabi quasimorphism and quantum homology, Int. Math. Res. Not.2003 (2003), 1635–1676. Zbl1047.53055MR1979584
- [10] A. Floer, Morse theory for Lagrangian intersections, J. Differential Geom.28 (1988), 513–547. Zbl0674.57027MR965228
- [11] A. Floer, Witten’s complex and infinite-dimensional Morse theory, J. Differential Geom.30 (1989), 207–221. Zbl0678.58012MR1001276
- [12] A. Floer, H. Hofer & D. Salamon, Transversality in elliptic Morse theory for the symplectic action, Duke Math. J.80 (1995), 251–292. Zbl0846.58025MR1360618
- [13] K. Fukaya, Y.-G. Oh, H. Ohta & K. Ono, Canonical models of filtered -algebras and Morse complexes, in New perspectives and challenges in symplectic field theory, CRM Proc. Lecture Notes 49, Amer. Math. Soc., 2009, 201–227. Zbl1187.53085MR2555938
- [14] K. Fukaya, Y.-G. Oh, H. Ohta & K. Ono, Lagrangian intersection Floer theory: Anomaly and obstruction, Studies in Adv. Math., 2009. Zbl1181.53003
- [15] K. Fukaya, Y.-G. Oh, H. Ohta & K. Ono, Anti-symplectic involution and Floer cohomology, preprint arXiv:0912:2642.
- [16] K. Fukaya, Y.-G. Oh, H. Ohta & K. Ono, Displacement of polydisks and Lagrangian Floer theory, preprint arXiv:1102.4267.
- [17] K. Fukaya & K. Ono, Arnold conjecture and Gromov-Witten invariant, Topology38 (1999), 933–1048. Zbl0946.53047MR1688434
- [18] L. Gerritzen & U. Güntzer, Über Restklassennormen auf affinoiden Algebren, Invent. Math.3 (1967), 71–74. MR214814
- [19] R. E. Gompf, A new construction of symplectic manifolds, Ann. of Math.142 (1995), 527–595. Zbl0849.53027MR1356781
- [20] H. Hofer, On the topological properties of symplectic maps, Proc. Roy. Soc. Edinburgh Sect. A115 (1990), 25–38. Zbl0713.58004MR1059642
- [21] H. Hofer & D. Salamon, Floer homology and Novikov rings, in The Floer memorial volume, Progr. Math. 133, Birkhäuser, 1995, 483–524. Zbl0842.58029MR1362838
- [22] H. Hofer & C. Viterbo, The Weinstein conjecture in the presence of holomorphic spheres, Comm. Pure Appl. Math.45 (1992), 583–622. Zbl0773.58021MR1162367
- [23] S. Hu & F. Lalonde, A relative Seidel morphism and the Albers map, Trans. Amer. Math. Soc.362 (2010), 1135–1168. Zbl1189.53076MR2563724
- [24] H. Iritani, Convergence of quantum cohomology by quantum Lefschetz, J. reine angew. Math. 610 (2007), 29–69. Zbl1160.14044MR2359850
- [25] T. Kato, Perturbation theory for linear operators, Grundl. der Math. Wiss. 132, Springer, 1976. Zbl0342.47009MR407617
- [26] M. Khanevsky, Hofer’s metric on the space of diameters, J. Topol. Anal.1 (2009), 407–416. Zbl1205.53082MR2597651
- [27] F. Lalonde & D. McDuff, The geometry of symplectic energy, Ann. of Math.141 (1995), 349–371. Zbl0829.53025MR1324138
- [28] F. Lalonde & D. McDuff, Hofer’s -geometry: energy and stability of Hamiltonian flows. I, II, Invent. Math. 122 (1995), 1–33, 35–69. Zbl0844.58020MR1354953
- [29] F. Lalonde & C. Pestieau, Stabilisation of symplectic inequalities and applications, in Northern California Symplectic Geometry Seminar, Amer. Math. Soc. Transl. Ser. 2 196, Amer. Math. Soc., 1999, 63–71. Zbl0955.53048MR1736214
- [30] F. Lalonde & L. Polterovich, Symplectic diffeomorphisms as isometries of Hofer’s norm, Topology36 (1997), 711–727. Zbl0874.53028MR1422431
- [31] R. Leclercq, Spectral invariants in Lagrangian Floer theory, J. Mod. Dyn.2 (2008), 249–286. Zbl1153.57021MR2383268
- [32] W. Li, The -graded symplectic Floer cohomology of monotone Lagrangian sub-manifolds, Algebr. Geom. Topol.4 (2004), 647–684. Zbl1061.53064MR2100676
- [33] G. Liu & G. Tian, Floer homology and Arnold conjecture, J. Differential Geom.49 (1998), 1–74. Zbl0917.58009MR1642105
- [34] G. Lu, An explicit isomorphism between Floer homology and quantum homology, Pacific J. Math.213 (2004), 319–363. Zbl1063.53088MR2036923
- [35] G. Lu, Gromov-Witten invariants and pseudo symplectic capacities, Israel J. Math.156 (2006), 1–63. Zbl1133.53059MR2282367
- [36] D. McDuff, Loops in the Hamiltonian group: a survey, in Symplectic topology and measure preserving dynamical systems, Contemp. Math. 512, Amer. Math. Soc., 2010, 127–148. MR2605315
- [37] D. McDuff, Monodromy in Hamiltonian Floer theory, Comment. Math. Helv.85 (2010), 95–133. Zbl1222.53092MR2563682
- [38] D. McDuff & D. Salamon, -holomorphic curves and symplectic topology, American Mathematical Society Colloquium Publications 52, Amer. Math. Soc., 2004. MR2045629
- [39] D. McDuff & J. Slimowitz, Hofer-Zehnder capacity and length minimizing Hamiltonian paths, Geom. Topol.5 (2001), 799–830. Zbl1002.57056MR1871405
- [40] D. Milinković, Action spectrum and Hofer’s distance between Lagrangian submanifolds, Differential Geom. Appl.17 (2002), 69–81. Zbl1035.53123MR1912179
- [41] Y.-G. Oh, Floer cohomology of Lagrangian intersections and pseudo-holomorphic disks. I, Comm. Pure Appl. Math. 46 (1993), 949–993. MR1223659
- [42] Y.-G. Oh, Spectral invariants and the length minimizing property of Hamiltonian paths, Asian J. Math.9 (2005), 1–18. MR2150687
- [43] Y.-G. Oh, Floer mini-max theory, the Cerf diagram, and the spectral invariants, J. Korean Math. Soc. 46 (2009), 363–447; Erratum 47 (2010), 1329–1330. Zbl1180.53084MR2494501
- [44] Y.-G. Oh & K. Zhu, Floer trajectories with immersed nodes and scale-dependent gluing, J. Symplectic Geom.9 (2011), 483–636. Zbl1257.53117MR2900788
- [45] Y. Ostrover, A comparison of Hofer’s metrics on Hamiltonian diffeomorphisms and Lagrangian submanifolds, Commun. Contemp. Math.5 (2003), 803–811. Zbl1053.53060MR2017719
- [46] T. Perutz, Lagrangian matching invariants for fibred four-manifolds. I, Geom. Topol. 11 (2007), 759–828. Zbl1143.53079MR2302502
- [47] S. Piunikhin, D. Salamon & M. Schwarz, Symplectic Floer-Donaldson theory and quantum cohomology, in Contact and symplectic geometry (Cambridge, 1994), Publ. Newton Inst. 8, Cambridge Univ. Press, 1996, 171–200. Zbl0874.53031MR1432464
- [48] L. Polterovich, Hofer’s diameter and Lagrangian intersections, Int. Math. Res. Not.1998 (1998), 217–223. Zbl0939.37030MR1609620
- [49] P. Py, Quelques plats pour la métrique de Hofer, J. reine angew. Math. 620 (2008), 185–193. Zbl1146.53049MR2427980
- [50] J. Robbin & D. Salamon, The Maslov index for paths, Topology32 (1993), 827–844. Zbl0798.58018MR1241874
- [51] D. Salamon & E. Zehnder, Morse theory for periodic solutions of Hamiltonian systems and the Maslov index, Comm. Pure Appl. Math.45 (1992), 1303–1360. Zbl0766.58023MR1181727
- [52] F. Schlenk, Applications of Hofer’s geometry to Hamiltonian dynamics, Comment. Math. Helv.81 (2006), 105–121. Zbl1094.37031MR2208800
- [53] M. Schwarz, Morse homology, Progress in Math. 111, Birkhäuser, 1993. MR1239174
- [54] M. Schwarz, On the action spectrum for closed symplectically aspherical manifolds, Pacific J. Math.193 (2000), 419–461. Zbl1023.57020MR1755825
- [55] P. Seidel, of symplectic automorphism groups and invertibles in quantum homology rings, Geom. Funct. Anal.7 (1997), 1046–1095. Zbl0928.53042MR1487754
- [56] M. Usher, Spectral numbers in Floer theories, Compos. Math.144 (2008), 1581–1592. Zbl1151.53074MR2474322
- [57] M. Usher, Duality in filtered Floer-Novikov complexes, J. Topol. Anal.2 (2010), 233–258. Zbl1196.53051MR2652908
- [58] M. Usher, The sharp energy-capacity inequality, Commun. Contemp. Math.12 (2010), 457–473. Zbl1200.53077MR2661273
- [59] M. Usher, Boundary depth in Floer theory and its applications to Hamiltonian dynamics and coisotropic submanifolds, Israel J. Math.184 (2011), 1–57. Zbl1253.53085MR2823968
- [60] M. Usher, Many closed symplectic manifolds have infinite Hofer-Zehnder capacity, Trans. Amer. Math. Soc.364 (2012), 5913–5943. Zbl1275.53081MR2946937
- [61] M. Usher, Linking and the morse complex, preprint arXiv:1207:0889. Zbl1301.53095
- [62] C. Viterbo, Intersection de sous-variétés lagrangiennes, fonctionnelles d’action et indice des systèmes hamiltoniens, Bull. Soc. Math. France115 (1987), 361–390. Zbl0639.58018MR926533
- [63] J. A. Yorke, Periods of periodic solutions and the Lipschitz constant, Proc. Amer. Math. Soc.22 (1969), 509–512. Zbl0184.12103MR245916
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.