Hofer’s metrics and boundary depth

Michael Usher

Annales scientifiques de l'École Normale Supérieure (2013)

  • Volume: 46, Issue: 1, page 57-129
  • ISSN: 0012-9593

Abstract

top
We show that if ( M , ω ) is a closed symplectic manifold which admits a nontrivial Hamiltonian vector field all of whose contractible closed orbits are constant, then Hofer’s metric on the group of Hamiltonian diffeomorphisms of  ( M , ω ) has infinite diameter, and indeed admits infinite-dimensional quasi-isometrically embedded normed vector spaces. A similar conclusion applies to Hofer’s metric on various spaces of Lagrangian submanifolds, including those Hamiltonian-isotopic to the diagonal in  M × M when M satisfies the above dynamical condition. To prove this, we use the properties of a Floer-theoretic quantity called the boundary depth, which measures the nontriviality of the boundary operator on the Floer complex in a way that encodes robust symplectic-topological information.

How to cite

top

Usher, Michael. "Hofer’s metrics and boundary depth." Annales scientifiques de l'École Normale Supérieure 46.1 (2013): 57-129. <http://eudml.org/doc/272152>.

@article{Usher2013,
abstract = {We show that if $(M,\omega )$ is a closed symplectic manifold which admits a nontrivial Hamiltonian vector field all of whose contractible closed orbits are constant, then Hofer’s metric on the group of Hamiltonian diffeomorphisms of $(M,\omega )$ has infinite diameter, and indeed admits infinite-dimensional quasi-isometrically embedded normed vector spaces. A similar conclusion applies to Hofer’s metric on various spaces of Lagrangian submanifolds, including those Hamiltonian-isotopic to the diagonal in $M\times M$ when $M$ satisfies the above dynamical condition. To prove this, we use the properties of a Floer-theoretic quantity called the boundary depth, which measures the nontriviality of the boundary operator on the Floer complex in a way that encodes robust symplectic-topological information.},
author = {Usher, Michael},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Hofer metric; hamiltonian diffeomorphism; lagrangian submanifold; Floer complex},
language = {eng},
number = {1},
pages = {57-129},
publisher = {Société mathématique de France},
title = {Hofer’s metrics and boundary depth},
url = {http://eudml.org/doc/272152},
volume = {46},
year = {2013},
}

TY - JOUR
AU - Usher, Michael
TI - Hofer’s metrics and boundary depth
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2013
PB - Société mathématique de France
VL - 46
IS - 1
SP - 57
EP - 129
AB - We show that if $(M,\omega )$ is a closed symplectic manifold which admits a nontrivial Hamiltonian vector field all of whose contractible closed orbits are constant, then Hofer’s metric on the group of Hamiltonian diffeomorphisms of $(M,\omega )$ has infinite diameter, and indeed admits infinite-dimensional quasi-isometrically embedded normed vector spaces. A similar conclusion applies to Hofer’s metric on various spaces of Lagrangian submanifolds, including those Hamiltonian-isotopic to the diagonal in $M\times M$ when $M$ satisfies the above dynamical condition. To prove this, we use the properties of a Floer-theoretic quantity called the boundary depth, which measures the nontriviality of the boundary operator on the Floer complex in a way that encodes robust symplectic-topological information.
LA - eng
KW - Hofer metric; hamiltonian diffeomorphism; lagrangian submanifold; Floer complex
UR - http://eudml.org/doc/272152
ER -

References

top
  1. [1] W. Ballmann & P. Eberlein, Fundamental groups of manifolds of nonpositive curvature, J. Differential Geom.25 (1987), 1–22. Zbl0701.53070MR873453
  2. [2] J.-F. Barraud & O. Cornea, Lagrangian intersections and the Serre spectral sequence, Ann. of Math.166 (2007), 657–722. Zbl1141.53078MR2373371
  3. [3] A. Bertram & M. Thaddeus, On the quantum cohomology of a symmetric product of an algebraic curve, Duke Math. J.108 (2001), 329–362. Zbl1050.14052MR1833394
  4. [4] P. Biran & O. Cornea, Quantum structures for Lagrangian submanifolds, preprint arXiv:0708.4221. Zbl1180.53078
  5. [5] P. Biran, L. Polterovich & D. Salamon, Propagation in Hamiltonian dynamics and relative symplectic homology, Duke Math. J.119 (2003), 65–118. Zbl1034.53089MR1991647
  6. [6] Y. V. Chekanov, Lagrangian intersections, symplectic energy, and areas of holomorphic curves, Duke Math. J.95 (1998), 213–226. Zbl0977.53077MR1646550
  7. [7] Y. V. Chekanov, Invariant Finsler metrics on the space of Lagrangian embeddings, Math. Z.234 (2000), 605–619. Zbl0985.37052MR1774099
  8. [8] O. Cornea & F. Lalonde, Cluster homology, preprint arXiv:math/0508345. 
  9. [9] M. Entov & L. Polterovich, Calabi quasimorphism and quantum homology, Int. Math. Res. Not.2003 (2003), 1635–1676. Zbl1047.53055MR1979584
  10. [10] A. Floer, Morse theory for Lagrangian intersections, J. Differential Geom.28 (1988), 513–547. Zbl0674.57027MR965228
  11. [11] A. Floer, Witten’s complex and infinite-dimensional Morse theory, J. Differential Geom.30 (1989), 207–221. Zbl0678.58012MR1001276
  12. [12] A. Floer, H. Hofer & D. Salamon, Transversality in elliptic Morse theory for the symplectic action, Duke Math. J.80 (1995), 251–292. Zbl0846.58025MR1360618
  13. [13] K. Fukaya, Y.-G. Oh, H. Ohta & K. Ono, Canonical models of filtered A -algebras and Morse complexes, in New perspectives and challenges in symplectic field theory, CRM Proc. Lecture Notes 49, Amer. Math. Soc., 2009, 201–227. Zbl1187.53085MR2555938
  14. [14] K. Fukaya, Y.-G. Oh, H. Ohta & K. Ono, Lagrangian intersection Floer theory: Anomaly and obstruction, Studies in Adv. Math., 2009. Zbl1181.53003
  15. [15] K. Fukaya, Y.-G. Oh, H. Ohta & K. Ono, Anti-symplectic involution and Floer cohomology, preprint arXiv:0912:2642. 
  16. [16] K. Fukaya, Y.-G. Oh, H. Ohta & K. Ono, Displacement of polydisks and Lagrangian Floer theory, preprint arXiv:1102.4267. 
  17. [17] K. Fukaya & K. Ono, Arnold conjecture and Gromov-Witten invariant, Topology38 (1999), 933–1048. Zbl0946.53047MR1688434
  18. [18] L. Gerritzen & U. Güntzer, Über Restklassennormen auf affinoiden Algebren, Invent. Math.3 (1967), 71–74. MR214814
  19. [19] R. E. Gompf, A new construction of symplectic manifolds, Ann. of Math.142 (1995), 527–595. Zbl0849.53027MR1356781
  20. [20] H. Hofer, On the topological properties of symplectic maps, Proc. Roy. Soc. Edinburgh Sect. A115 (1990), 25–38. Zbl0713.58004MR1059642
  21. [21] H. Hofer & D. Salamon, Floer homology and Novikov rings, in The Floer memorial volume, Progr. Math. 133, Birkhäuser, 1995, 483–524. Zbl0842.58029MR1362838
  22. [22] H. Hofer & C. Viterbo, The Weinstein conjecture in the presence of holomorphic spheres, Comm. Pure Appl. Math.45 (1992), 583–622. Zbl0773.58021MR1162367
  23. [23] S. Hu & F. Lalonde, A relative Seidel morphism and the Albers map, Trans. Amer. Math. Soc.362 (2010), 1135–1168. Zbl1189.53076MR2563724
  24. [24] H. Iritani, Convergence of quantum cohomology by quantum Lefschetz, J. reine angew. Math. 610 (2007), 29–69. Zbl1160.14044MR2359850
  25. [25] T. Kato, Perturbation theory for linear operators, Grundl. der Math. Wiss. 132, Springer, 1976. Zbl0342.47009MR407617
  26. [26] M. Khanevsky, Hofer’s metric on the space of diameters, J. Topol. Anal.1 (2009), 407–416. Zbl1205.53082MR2597651
  27. [27] F. Lalonde & D. McDuff, The geometry of symplectic energy, Ann. of Math.141 (1995), 349–371. Zbl0829.53025MR1324138
  28. [28] F. Lalonde & D. McDuff, Hofer’s L -geometry: energy and stability of Hamiltonian flows. I, II, Invent. Math. 122 (1995), 1–33, 35–69. Zbl0844.58020MR1354953
  29. [29] F. Lalonde & C. Pestieau, Stabilisation of symplectic inequalities and applications, in Northern California Symplectic Geometry Seminar, Amer. Math. Soc. Transl. Ser. 2 196, Amer. Math. Soc., 1999, 63–71. Zbl0955.53048MR1736214
  30. [30] F. Lalonde & L. Polterovich, Symplectic diffeomorphisms as isometries of Hofer’s norm, Topology36 (1997), 711–727. Zbl0874.53028MR1422431
  31. [31] R. Leclercq, Spectral invariants in Lagrangian Floer theory, J. Mod. Dyn.2 (2008), 249–286. Zbl1153.57021MR2383268
  32. [32] W. Li, The -graded symplectic Floer cohomology of monotone Lagrangian sub-manifolds, Algebr. Geom. Topol.4 (2004), 647–684. Zbl1061.53064MR2100676
  33. [33] G. Liu & G. Tian, Floer homology and Arnold conjecture, J. Differential Geom.49 (1998), 1–74. Zbl0917.58009MR1642105
  34. [34] G. Lu, An explicit isomorphism between Floer homology and quantum homology, Pacific J. Math.213 (2004), 319–363. Zbl1063.53088MR2036923
  35. [35] G. Lu, Gromov-Witten invariants and pseudo symplectic capacities, Israel J. Math.156 (2006), 1–63. Zbl1133.53059MR2282367
  36. [36] D. McDuff, Loops in the Hamiltonian group: a survey, in Symplectic topology and measure preserving dynamical systems, Contemp. Math. 512, Amer. Math. Soc., 2010, 127–148. MR2605315
  37. [37] D. McDuff, Monodromy in Hamiltonian Floer theory, Comment. Math. Helv.85 (2010), 95–133. Zbl1222.53092MR2563682
  38. [38] D. McDuff & D. Salamon, J -holomorphic curves and symplectic topology, American Mathematical Society Colloquium Publications 52, Amer. Math. Soc., 2004. MR2045629
  39. [39] D. McDuff & J. Slimowitz, Hofer-Zehnder capacity and length minimizing Hamiltonian paths, Geom. Topol.5 (2001), 799–830. Zbl1002.57056MR1871405
  40. [40] D. Milinković, Action spectrum and Hofer’s distance between Lagrangian submanifolds, Differential Geom. Appl.17 (2002), 69–81. Zbl1035.53123MR1912179
  41. [41] Y.-G. Oh, Floer cohomology of Lagrangian intersections and pseudo-holomorphic disks. I, Comm. Pure Appl. Math. 46 (1993), 949–993. MR1223659
  42. [42] Y.-G. Oh, Spectral invariants and the length minimizing property of Hamiltonian paths, Asian J. Math.9 (2005), 1–18. MR2150687
  43. [43] Y.-G. Oh, Floer mini-max theory, the Cerf diagram, and the spectral invariants, J. Korean Math. Soc. 46 (2009), 363–447; Erratum 47 (2010), 1329–1330. Zbl1180.53084MR2494501
  44. [44] Y.-G. Oh & K. Zhu, Floer trajectories with immersed nodes and scale-dependent gluing, J. Symplectic Geom.9 (2011), 483–636. Zbl1257.53117MR2900788
  45. [45] Y. Ostrover, A comparison of Hofer’s metrics on Hamiltonian diffeomorphisms and Lagrangian submanifolds, Commun. Contemp. Math.5 (2003), 803–811. Zbl1053.53060MR2017719
  46. [46] T. Perutz, Lagrangian matching invariants for fibred four-manifolds. I, Geom. Topol. 11 (2007), 759–828. Zbl1143.53079MR2302502
  47. [47] S. Piunikhin, D. Salamon & M. Schwarz, Symplectic Floer-Donaldson theory and quantum cohomology, in Contact and symplectic geometry (Cambridge, 1994), Publ. Newton Inst. 8, Cambridge Univ. Press, 1996, 171–200. Zbl0874.53031MR1432464
  48. [48] L. Polterovich, Hofer’s diameter and Lagrangian intersections, Int. Math. Res. Not.1998 (1998), 217–223. Zbl0939.37030MR1609620
  49. [49] P. Py, Quelques plats pour la métrique de Hofer, J. reine angew. Math. 620 (2008), 185–193. Zbl1146.53049MR2427980
  50. [50] J. Robbin & D. Salamon, The Maslov index for paths, Topology32 (1993), 827–844. Zbl0798.58018MR1241874
  51. [51] D. Salamon & E. Zehnder, Morse theory for periodic solutions of Hamiltonian systems and the Maslov index, Comm. Pure Appl. Math.45 (1992), 1303–1360. Zbl0766.58023MR1181727
  52. [52] F. Schlenk, Applications of Hofer’s geometry to Hamiltonian dynamics, Comment. Math. Helv.81 (2006), 105–121. Zbl1094.37031MR2208800
  53. [53] M. Schwarz, Morse homology, Progress in Math. 111, Birkhäuser, 1993. MR1239174
  54. [54] M. Schwarz, On the action spectrum for closed symplectically aspherical manifolds, Pacific J. Math.193 (2000), 419–461. Zbl1023.57020MR1755825
  55. [55] P. Seidel, π 1 of symplectic automorphism groups and invertibles in quantum homology rings, Geom. Funct. Anal.7 (1997), 1046–1095. Zbl0928.53042MR1487754
  56. [56] M. Usher, Spectral numbers in Floer theories, Compos. Math.144 (2008), 1581–1592. Zbl1151.53074MR2474322
  57. [57] M. Usher, Duality in filtered Floer-Novikov complexes, J. Topol. Anal.2 (2010), 233–258. Zbl1196.53051MR2652908
  58. [58] M. Usher, The sharp energy-capacity inequality, Commun. Contemp. Math.12 (2010), 457–473. Zbl1200.53077MR2661273
  59. [59] M. Usher, Boundary depth in Floer theory and its applications to Hamiltonian dynamics and coisotropic submanifolds, Israel J. Math.184 (2011), 1–57. Zbl1253.53085MR2823968
  60. [60] M. Usher, Many closed symplectic manifolds have infinite Hofer-Zehnder capacity, Trans. Amer. Math. Soc.364 (2012), 5913–5943. Zbl1275.53081MR2946937
  61. [61] M. Usher, Linking and the morse complex, preprint arXiv:1207:0889. Zbl1301.53095
  62. [62] C. Viterbo, Intersection de sous-variétés lagrangiennes, fonctionnelles d’action et indice des systèmes hamiltoniens, Bull. Soc. Math. France115 (1987), 361–390. Zbl0639.58018MR926533
  63. [63] J. A. Yorke, Periods of periodic solutions and the Lipschitz constant, Proc. Amer. Math. Soc.22 (1969), 509–512. Zbl0184.12103MR245916

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.