Smallness problem for quantum affine algebras and quiver varieties

David Hernandez

Annales scientifiques de l'École Normale Supérieure (2008)

  • Volume: 41, Issue: 2, page 271-306
  • ISSN: 0012-9593

Abstract

top
The geometric small property (Borho-MacPherson [2]) of projective morphisms implies a description of their singularities in terms of intersection homology. In this paper we solve the smallness problem raised by Nakajima [37, 35] for certain resolutions of quiver varieties [37] (analogs of the Springer resolution): for Kirillov-Reshetikhin modules of simply-laced quantum affine algebras, we characterize explicitly the Drinfeld polynomials corresponding to the small resolutions. We use an elimination theorem for monomials of Frenkel-Reshetikhin q -characters that we establish for non necessarily simply-laced quantum affine algebras. We also refine results of [21] and extend the main result to general simply-laced quantum affinizations, in particular to quantum toroidal algebras (double affine quantum algebras).

How to cite

top

Hernandez, David. "Smallness problem for quantum affine algebras and quiver varieties." Annales scientifiques de l'École Normale Supérieure 41.2 (2008): 271-306. <http://eudml.org/doc/272159>.

@article{Hernandez2008,
abstract = {The geometric small property (Borho-MacPherson [2]) of projective morphisms implies a description of their singularities in terms of intersection homology. In this paper we solve the smallness problem raised by Nakajima [37, 35] for certain resolutions of quiver varieties [37] (analogs of the Springer resolution): for Kirillov-Reshetikhin modules of simply-laced quantum affine algebras, we characterize explicitly the Drinfeld polynomials corresponding to the small resolutions. We use an elimination theorem for monomials of Frenkel-Reshetikhin $q$-characters that we establish for non necessarily simply-laced quantum affine algebras. We also refine results of [21] and extend the main result to general simply-laced quantum affinizations, in particular to quantum toroidal algebras (double affine quantum algebras).},
author = {Hernandez, David},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {quantum affine algebras; graded quiver varieties},
language = {eng},
number = {2},
pages = {271-306},
publisher = {Société mathématique de France},
title = {Smallness problem for quantum affine algebras and quiver varieties},
url = {http://eudml.org/doc/272159},
volume = {41},
year = {2008},
}

TY - JOUR
AU - Hernandez, David
TI - Smallness problem for quantum affine algebras and quiver varieties
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2008
PB - Société mathématique de France
VL - 41
IS - 2
SP - 271
EP - 306
AB - The geometric small property (Borho-MacPherson [2]) of projective morphisms implies a description of their singularities in terms of intersection homology. In this paper we solve the smallness problem raised by Nakajima [37, 35] for certain resolutions of quiver varieties [37] (analogs of the Springer resolution): for Kirillov-Reshetikhin modules of simply-laced quantum affine algebras, we characterize explicitly the Drinfeld polynomials corresponding to the small resolutions. We use an elimination theorem for monomials of Frenkel-Reshetikhin $q$-characters that we establish for non necessarily simply-laced quantum affine algebras. We also refine results of [21] and extend the main result to general simply-laced quantum affinizations, in particular to quantum toroidal algebras (double affine quantum algebras).
LA - eng
KW - quantum affine algebras; graded quiver varieties
UR - http://eudml.org/doc/272159
ER -

References

top
  1. [1] A. A. Beilinson, J. Bernstein & P. Deligne, Faisceaux pervers, in Analysis and topology on singular spaces, I (Luminy, 1981), Astérisque 100, Soc. Math. France, 1982, 5–171. Zbl0536.14011
  2. [2] W. Borho & R. MacPherson, Partial resolutions of nilpotent varieties, in Analysis and topology on singular spaces, II, III (Luminy, 1981), Astérisque 101, Soc. Math. France, 1983, 23–74. Zbl0576.14046
  3. [3] N. Bourbaki, Éléments de mathématique. Groupes et algèbres de Lie. Chapitres 4 à 6, Paris, Hermann, 1968 ; Springer, 2007. Zbl1120.17002
  4. [4] V. Chari & A. A. Moura, Characters and blocks for finite-dimensional representations of quantum affine algebras, Int. Math. Res. Not.5 (2005), 257–298. Zbl1074.17004
  5. [5] V. Chari & A. A. Moura, Characters of fundamental representations of quantum affine algebras, Acta Appl. Math.90 (2006), 43–63. Zbl1101.17016
  6. [6] V. Chari & A. Pressley, Quantum affine algebras, Comm. Math. Phys.142 (1991), 261–283. Zbl0739.17004
  7. [7] V. Chari & A. Pressley, A guide to quantum groups, Cambridge University Press, 1994. Zbl0839.17009
  8. [8] V. Chari & A. Pressley, Quantum affine algebras and their representations, in Representations of groups (Banff, AB, 1994), CMS Conf. Proc. 16, Amer. Math. Soc., 1995, 59–78. Zbl0855.17009
  9. [9] V. Chari & A. Pressley, Integrable and Weyl modules for quantum affine sl 2 , in Quantum groups and Lie theory (Durham, 1999), London Math. Soc. Lecture Note Ser. 290, Cambridge Univ. Press, 2001, 48–62. Zbl1034.17008
  10. [10] G. W. Delius & N. J. MacKay, Affine quantum groups, in Encyclopedia of Mathematical Physics, Elsevier, 2006. Zbl1040.81042
  11. [11] V. G. Drinfelʼd, Quantum groups, in Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), Amer. Math. Soc., 1987, 798–820. Zbl0667.16003MR934283
  12. [12] V. G. Drinfelʼd, A new realization of Yangians and of quantum affine algebras, Soviet Math. Dokl.36 (1998), 212–216. Zbl0667.16004MR914215
  13. [13] E. Frenkel & E. Mukhin, Combinatorics of q -characters of finite-dimensional representations of quantum affine algebras, Comm. Math. Phys.216 (2001), 23–57. Zbl1051.17013
  14. [14] E. Frenkel & N. Reshetikhin, The q -characters of representations of quantum affine algebras and deformations of 𝒲 -algebras, in Recent developments in quantum affine algebras and related topics (Raleigh, NC, 1998), Contemp. Math. 248, Amer. Math. Soc., 1999, 163–205. Zbl0973.17015
  15. [15] M. Goresky & R. MacPherson, Intersection homology theory, Topology19 (1980), 135–162. Zbl0448.55004
  16. [16] M. Goresky & R. MacPherson, Intersection homology. II, Invent. Math. 72 (1983), 77–129. Zbl0529.55007
  17. [17] R. M. Hardt, Semi-algebraic local-triviality in semi-algebraic mappings, Amer. J. Math.102 (1980), 291–302. Zbl0465.14012MR564475
  18. [18] D. Hernandez, Algebraic approach to q , t -characters, Adv. Math.187 (2004), 1–52. Zbl1098.17009MR2074171
  19. [19] D. Hernandez, Monomials of q and q , t -characters for non simply-laced quantum affinizations, Math. Z.250 (2005), 443–473. Zbl1098.17010MR2178794
  20. [20] D. Hernandez, Representations of quantum affinizations and fusion product, Transform. Groups10 (2005), 163–200. Zbl1102.17009MR2195598
  21. [21] D. Hernandez, The Kirillov-Reshetikhin conjecture and solutions of T -systems, J. reine angew. Math. 596 (2006), 63–87. Zbl1160.17010MR2254805
  22. [22] D. Hernandez, Drinfeld coproduct, quantum fusion tensor category and applications, Proc. Lond. Math. Soc.95 (2007), 567–608. Zbl1133.17010MR2368277
  23. [23] D. Hernandez, On minimal affinizations of representations of quantum groups, Comm. Math. Phys.276 (2007), 221–259. Zbl1141.17011MR2342293
  24. [24] M. Jimbo, A q -difference analogue of U ( 𝔤 ) and the Yang-Baxter equation, Lett. Math. Phys.10 (1985), 63–69. Zbl0587.17004MR797001
  25. [25] V. G. Kac, Infinite-dimensional Lie algebras, third éd., Cambridge University Press, 1990. Zbl0574.17010MR1104219
  26. [26] A. N. Kirillov & N. Reshetikhin, Representations of Yangians and multiplicities of the inclusion of the irreducible components of the tensor product of representations of simple Lie algebras, J. Soviet Math 52 (1990), 3156–3164, translated from Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 160, Anal. Teor. Chisel i Teor. Funktsii. 8, 211–221, 301 (1987). Zbl0900.16047
  27. [27] H. Knight, Spectra of tensor products of finite-dimensional representations of Yangians, J. Algebra174 (1995), 187–196. Zbl0868.17009MR1332866
  28. [28] A. Kuniba & J. Suzuki, Analytic Bethe ansatz for fundamental representations of Yangians, Comm. Math. Phys.173 (1995), 225–264. Zbl0834.58045
  29. [29] K. Miki, Representations of quantum toroidal algebra U q ( sl n + 1 , tor ) ( n 2 ) , J. Math. Phys.41 (2000), 7079–7098. Zbl1028.17011MR1781425
  30. [30] H. Nakajima, Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras, Duke Math. J.76 (1994), 365–416. Zbl0826.17026MR1302318
  31. [31] H. Nakajima, Quiver varieties and Kac-Moody algebras, Duke Math. J.91 (1998), 515–560. Zbl0970.17017MR1604167
  32. [32] H. Nakajima, Quiver varieties and finite-dimensional representations of quantum affine algebras, J. Amer. Math. Soc.14 (2001), 145–238. Zbl0981.17016MR1808477
  33. [33] H. Nakajima, T -analogue of the q -characters of finite dimensional representations of quantum affine algebras, in Physics and combinatorics, 2000 (Nagoya), World Sci. Publ., River Edge, NJ, 2001, 196–219. Zbl1011.17013MR1872257
  34. [34] H. Nakajima, Geometric construction of representations of affine algebras, in Proceedings of the International Congress of Mathematicians, Vol. I (Beijing, 2002), Higher Ed. Press, 2002, 423–438. Zbl1049.17014MR1989196
  35. [35] H. Nakajima, Problems on quiver varieties, in The 50th Geometry Symposium, Hokkaido Univ., 2003, http://www.math.kyoto-u.ac.jp/~nakajima/TeX/kika03.pdf. 
  36. [36] H. Nakajima, t -analogs of q -characters of Kirillov-Reshetikhin modules of quantum affine algebras, Represent. Theory 7 (2003), 259–274 (electronic). Zbl1078.17008MR1993360
  37. [37] H. Nakajima, Quiver varieties and t -analogs of q -characters of quantum affine algebras, Ann. of Math.160 (2004), 1057–1097. Zbl1140.17015MR2144973
  38. [38] O. Schiffmann, Nakajima’s quiver varieties, Séminaire Bourbaki 2006/07, exposé no 976, Astérisque (2008), 295–344. Zbl1151.14026MR2487738
  39. [39] R. Thom, Ensembles et morphismes stratifiés, Bull. Amer. Math. Soc.75 (1969), 240–284. Zbl0197.20502MR239613
  40. [40] M. Varagnolo & É. Vasserot, Standard modules of quantum affine algebras, Duke Math. J.111 (2002), 509–533. Zbl1011.17012

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.