Smallness problem for quantum affine algebras and quiver varieties
Annales scientifiques de l'École Normale Supérieure (2008)
- Volume: 41, Issue: 2, page 271-306
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topHernandez, David. "Smallness problem for quantum affine algebras and quiver varieties." Annales scientifiques de l'École Normale Supérieure 41.2 (2008): 271-306. <http://eudml.org/doc/272159>.
@article{Hernandez2008,
abstract = {The geometric small property (Borho-MacPherson [2]) of projective morphisms implies a description of their singularities in terms of intersection homology. In this paper we solve the smallness problem raised by Nakajima [37, 35] for certain resolutions of quiver varieties [37] (analogs of the Springer resolution): for Kirillov-Reshetikhin modules of simply-laced quantum affine algebras, we characterize explicitly the Drinfeld polynomials corresponding to the small resolutions. We use an elimination theorem for monomials of Frenkel-Reshetikhin $q$-characters that we establish for non necessarily simply-laced quantum affine algebras. We also refine results of [21] and extend the main result to general simply-laced quantum affinizations, in particular to quantum toroidal algebras (double affine quantum algebras).},
author = {Hernandez, David},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {quantum affine algebras; graded quiver varieties},
language = {eng},
number = {2},
pages = {271-306},
publisher = {Société mathématique de France},
title = {Smallness problem for quantum affine algebras and quiver varieties},
url = {http://eudml.org/doc/272159},
volume = {41},
year = {2008},
}
TY - JOUR
AU - Hernandez, David
TI - Smallness problem for quantum affine algebras and quiver varieties
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2008
PB - Société mathématique de France
VL - 41
IS - 2
SP - 271
EP - 306
AB - The geometric small property (Borho-MacPherson [2]) of projective morphisms implies a description of their singularities in terms of intersection homology. In this paper we solve the smallness problem raised by Nakajima [37, 35] for certain resolutions of quiver varieties [37] (analogs of the Springer resolution): for Kirillov-Reshetikhin modules of simply-laced quantum affine algebras, we characterize explicitly the Drinfeld polynomials corresponding to the small resolutions. We use an elimination theorem for monomials of Frenkel-Reshetikhin $q$-characters that we establish for non necessarily simply-laced quantum affine algebras. We also refine results of [21] and extend the main result to general simply-laced quantum affinizations, in particular to quantum toroidal algebras (double affine quantum algebras).
LA - eng
KW - quantum affine algebras; graded quiver varieties
UR - http://eudml.org/doc/272159
ER -
References
top- [1] A. A. Beilinson, J. Bernstein & P. Deligne, Faisceaux pervers, in Analysis and topology on singular spaces, I (Luminy, 1981), Astérisque 100, Soc. Math. France, 1982, 5–171. Zbl0536.14011
- [2] W. Borho & R. MacPherson, Partial resolutions of nilpotent varieties, in Analysis and topology on singular spaces, II, III (Luminy, 1981), Astérisque 101, Soc. Math. France, 1983, 23–74. Zbl0576.14046
- [3] N. Bourbaki, Éléments de mathématique. Groupes et algèbres de Lie. Chapitres 4 à 6, Paris, Hermann, 1968 ; Springer, 2007. Zbl1120.17002
- [4] V. Chari & A. A. Moura, Characters and blocks for finite-dimensional representations of quantum affine algebras, Int. Math. Res. Not.5 (2005), 257–298. Zbl1074.17004
- [5] V. Chari & A. A. Moura, Characters of fundamental representations of quantum affine algebras, Acta Appl. Math.90 (2006), 43–63. Zbl1101.17016
- [6] V. Chari & A. Pressley, Quantum affine algebras, Comm. Math. Phys.142 (1991), 261–283. Zbl0739.17004
- [7] V. Chari & A. Pressley, A guide to quantum groups, Cambridge University Press, 1994. Zbl0839.17009
- [8] V. Chari & A. Pressley, Quantum affine algebras and their representations, in Representations of groups (Banff, AB, 1994), CMS Conf. Proc. 16, Amer. Math. Soc., 1995, 59–78. Zbl0855.17009
- [9] V. Chari & A. Pressley, Integrable and Weyl modules for quantum affine , in Quantum groups and Lie theory (Durham, 1999), London Math. Soc. Lecture Note Ser. 290, Cambridge Univ. Press, 2001, 48–62. Zbl1034.17008
- [10] G. W. Delius & N. J. MacKay, Affine quantum groups, in Encyclopedia of Mathematical Physics, Elsevier, 2006. Zbl1040.81042
- [11] V. G. Drinfelʼd, Quantum groups, in Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), Amer. Math. Soc., 1987, 798–820. Zbl0667.16003MR934283
- [12] V. G. Drinfelʼd, A new realization of Yangians and of quantum affine algebras, Soviet Math. Dokl.36 (1998), 212–216. Zbl0667.16004MR914215
- [13] E. Frenkel & E. Mukhin, Combinatorics of -characters of finite-dimensional representations of quantum affine algebras, Comm. Math. Phys.216 (2001), 23–57. Zbl1051.17013
- [14] E. Frenkel & N. Reshetikhin, The -characters of representations of quantum affine algebras and deformations of -algebras, in Recent developments in quantum affine algebras and related topics (Raleigh, NC, 1998), Contemp. Math. 248, Amer. Math. Soc., 1999, 163–205. Zbl0973.17015
- [15] M. Goresky & R. MacPherson, Intersection homology theory, Topology19 (1980), 135–162. Zbl0448.55004
- [16] M. Goresky & R. MacPherson, Intersection homology. II, Invent. Math. 72 (1983), 77–129. Zbl0529.55007
- [17] R. M. Hardt, Semi-algebraic local-triviality in semi-algebraic mappings, Amer. J. Math.102 (1980), 291–302. Zbl0465.14012MR564475
- [18] D. Hernandez, Algebraic approach to -characters, Adv. Math.187 (2004), 1–52. Zbl1098.17009MR2074171
- [19] D. Hernandez, Monomials of and -characters for non simply-laced quantum affinizations, Math. Z.250 (2005), 443–473. Zbl1098.17010MR2178794
- [20] D. Hernandez, Representations of quantum affinizations and fusion product, Transform. Groups10 (2005), 163–200. Zbl1102.17009MR2195598
- [21] D. Hernandez, The Kirillov-Reshetikhin conjecture and solutions of -systems, J. reine angew. Math. 596 (2006), 63–87. Zbl1160.17010MR2254805
- [22] D. Hernandez, Drinfeld coproduct, quantum fusion tensor category and applications, Proc. Lond. Math. Soc.95 (2007), 567–608. Zbl1133.17010MR2368277
- [23] D. Hernandez, On minimal affinizations of representations of quantum groups, Comm. Math. Phys.276 (2007), 221–259. Zbl1141.17011MR2342293
- [24] M. Jimbo, A -difference analogue of and the Yang-Baxter equation, Lett. Math. Phys.10 (1985), 63–69. Zbl0587.17004MR797001
- [25] V. G. Kac, Infinite-dimensional Lie algebras, third éd., Cambridge University Press, 1990. Zbl0574.17010MR1104219
- [26] A. N. Kirillov & N. Reshetikhin, Representations of Yangians and multiplicities of the inclusion of the irreducible components of the tensor product of representations of simple Lie algebras, J. Soviet Math 52 (1990), 3156–3164, translated from Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 160, Anal. Teor. Chisel i Teor. Funktsii. 8, 211–221, 301 (1987). Zbl0900.16047
- [27] H. Knight, Spectra of tensor products of finite-dimensional representations of Yangians, J. Algebra174 (1995), 187–196. Zbl0868.17009MR1332866
- [28] A. Kuniba & J. Suzuki, Analytic Bethe ansatz for fundamental representations of Yangians, Comm. Math. Phys.173 (1995), 225–264. Zbl0834.58045
- [29] K. Miki, Representations of quantum toroidal algebra , J. Math. Phys.41 (2000), 7079–7098. Zbl1028.17011MR1781425
- [30] H. Nakajima, Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras, Duke Math. J.76 (1994), 365–416. Zbl0826.17026MR1302318
- [31] H. Nakajima, Quiver varieties and Kac-Moody algebras, Duke Math. J.91 (1998), 515–560. Zbl0970.17017MR1604167
- [32] H. Nakajima, Quiver varieties and finite-dimensional representations of quantum affine algebras, J. Amer. Math. Soc.14 (2001), 145–238. Zbl0981.17016MR1808477
- [33] H. Nakajima, -analogue of the -characters of finite dimensional representations of quantum affine algebras, in Physics and combinatorics, 2000 (Nagoya), World Sci. Publ., River Edge, NJ, 2001, 196–219. Zbl1011.17013MR1872257
- [34] H. Nakajima, Geometric construction of representations of affine algebras, in Proceedings of the International Congress of Mathematicians, Vol. I (Beijing, 2002), Higher Ed. Press, 2002, 423–438. Zbl1049.17014MR1989196
- [35] H. Nakajima, Problems on quiver varieties, in The 50th Geometry Symposium, Hokkaido Univ., 2003, http://www.math.kyoto-u.ac.jp/~nakajima/TeX/kika03.pdf.
- [36] H. Nakajima, -analogs of -characters of Kirillov-Reshetikhin modules of quantum affine algebras, Represent. Theory 7 (2003), 259–274 (electronic). Zbl1078.17008MR1993360
- [37] H. Nakajima, Quiver varieties and -analogs of -characters of quantum affine algebras, Ann. of Math.160 (2004), 1057–1097. Zbl1140.17015MR2144973
- [38] O. Schiffmann, Nakajima’s quiver varieties, Séminaire Bourbaki 2006/07, exposé no 976, Astérisque (2008), 295–344. Zbl1151.14026MR2487738
- [39] R. Thom, Ensembles et morphismes stratifiés, Bull. Amer. Math. Soc.75 (1969), 240–284. Zbl0197.20502MR239613
- [40] M. Varagnolo & É. Vasserot, Standard modules of quantum affine algebras, Duke Math. J.111 (2002), 509–533. Zbl1011.17012
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.