Multi-Harnack smoothings of real plane branches
Pedro Daniel González Pérez; Jean-Jacques Risler
Annales scientifiques de l'École Normale Supérieure (2010)
- Volume: 43, Issue: 1, page 143-184
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topGonzález Pérez, Pedro Daniel, and Risler, Jean-Jacques. "Multi-Harnack smoothings of real plane branches." Annales scientifiques de l'École Normale Supérieure 43.1 (2010): 143-184. <http://eudml.org/doc/272195>.
@article{GonzálezPérez2010,
abstract = {Let $\Delta \subset \mathbf \{R\}^2$ be an integral convex polygon. G. Mikhalkin introduced the notion ofHarnack curves, a class of real algebraic curves, defined by polynomials supported on $\Delta $ and contained in the corresponding toric surface. He proved their existence, viaViro’s patchworkingmethod, and that the topological type of their real parts is unique (and determined by $\Delta $). This paper is concerned with the description of the analogous statement in the case of a smoothing of a real plane branch $(C,0)$. We introduce the class ofmulti-Harnacksmoothings of $(C,0)$ by passing through a resolution of singularities of $(C,0)$ consisting of $g$ monomial maps (where $g$ is the number of characteristic pairs of the branch). A multi-Harnack smoothing is a $g$-parametrical deformation which arises as the result of a sequence, beginning at the last step of the resolution, consisting of a suitableHarnack smoothing (in terms of Mikhalkin’s definition) followed by the corresponding monomial blow down. We prove then the unicity of the topological type of a multi-Harnack smoothing. In addition, the multi-Harnack smoothings can be seen as multi-semi-quasi-homogeneous in terms of the parameters. Using this property we analyze the asymptotic multi-scales of the ovals of a multi-Harnack smoothing. We prove that these scales characterize and are characterized by the equisingularity class of the branch.},
author = {González Pérez, Pedro Daniel, Risler, Jean-Jacques},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {smoothings of singularities; real algebraic curves; harnack curves},
language = {eng},
number = {1},
pages = {143-184},
publisher = {Société mathématique de France},
title = {Multi-Harnack smoothings of real plane branches},
url = {http://eudml.org/doc/272195},
volume = {43},
year = {2010},
}
TY - JOUR
AU - González Pérez, Pedro Daniel
AU - Risler, Jean-Jacques
TI - Multi-Harnack smoothings of real plane branches
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2010
PB - Société mathématique de France
VL - 43
IS - 1
SP - 143
EP - 184
AB - Let $\Delta \subset \mathbf {R}^2$ be an integral convex polygon. G. Mikhalkin introduced the notion ofHarnack curves, a class of real algebraic curves, defined by polynomials supported on $\Delta $ and contained in the corresponding toric surface. He proved their existence, viaViro’s patchworkingmethod, and that the topological type of their real parts is unique (and determined by $\Delta $). This paper is concerned with the description of the analogous statement in the case of a smoothing of a real plane branch $(C,0)$. We introduce the class ofmulti-Harnacksmoothings of $(C,0)$ by passing through a resolution of singularities of $(C,0)$ consisting of $g$ monomial maps (where $g$ is the number of characteristic pairs of the branch). A multi-Harnack smoothing is a $g$-parametrical deformation which arises as the result of a sequence, beginning at the last step of the resolution, consisting of a suitableHarnack smoothing (in terms of Mikhalkin’s definition) followed by the corresponding monomial blow down. We prove then the unicity of the topological type of a multi-Harnack smoothing. In addition, the multi-Harnack smoothings can be seen as multi-semi-quasi-homogeneous in terms of the parameters. Using this property we analyze the asymptotic multi-scales of the ovals of a multi-Harnack smoothing. We prove that these scales characterize and are characterized by the equisingularity class of the branch.
LA - eng
KW - smoothings of singularities; real algebraic curves; harnack curves
UR - http://eudml.org/doc/272195
ER -
References
top- [1] N. A’Campo & M. Oka, Geometry of plane curves via Tschirnhausen resolution tower, Osaka J. Math.33 (1996), 1003–1033. Zbl0904.14014
- [2] V. I. Arnolʼd, Some open problems in the theory of singularities, in Singularities, Part 1 (Arcata, Calif., 1981), Proc. Sympos. Pure Math. 40, Amer. Math. Soc., 1983, 57–69. Zbl0519.58019
- [3] F. Bihan, Viro method for the construction of real complete intersections, Adv. Math.169 (2002), 177–186. Zbl1048.14035
- [4] L. Brusotti, Curve generatrici e curve aggregate nella costruzione di curve piane d’ordine assegnato dotate del massimo numero di circuiti, Rend. Circ. Mat. Palermo42 (1917), 138–144. Zbl46.0950.02JFM46.0950.02
- [5] M. Forsberg, M. Passare & A. Tsikh, Laurent determinants and arrangements of hyperplane amoebas, Adv. Math.151 (2000), 45–70. Zbl1002.32018
- [6] W. Fulton, Introduction to toric varieties, Annals of Math. Studies 131, Princeton Univ. Press, 1993. Zbl0813.14039
- [7] E. García Barroso & B. Teissier, Concentration multi-échelles de courbure dans des fibres de Milnor, Comment. Math. Helv.74 (1999), 398–418. Zbl0956.32028MR1710694
- [8] I. M. Gel’fand, M. M. Kapranov & A. V. Zelevinsky, Discriminants, resultants and multi-dimensional determinants, Birkhäuser, 1994. Zbl0827.14036MR1264417
- [9] R. Goldin & B. Teissier, Resolving singularities of plane analytic branches with one toric morphism, in Resolution of singularities (Obergurgl, 1997), Progr. Math. 181, Birkhäuser, 2000, 315–340. Zbl0995.14002MR1748626
- [10] P. D. González Pérez, Singularités quasi-ordinaires toriques et polyèdre de Newton du discriminant, Canad. J. Math.52 (2000), 348–368. Zbl0970.14027
- [11] P. D. González Pérez, Approximate roots, toric resolutions and deformations of a plane branch, to appear in J. of the Math. Soc. of Japan. Zbl1258.14039MR2648070
- [12] A. G. Hovanskiĭ, Newton polyhedra, and the genus of complete intersections, Funktsional. Anal. i Prilozhen. 12 (1978), 51–61, English transl. Functional Anal. Appl. 12 (1978), 38–46. Zbl0406.14035MR487230
- [13] I. Itenberg, Viro’s method and -curves, in Algorithms in algebraic geometry and applications (Santander, 1994), Progr. Math. 143, Birkhäuser, 1996, 177–192. Zbl0879.14029MR1414451
- [14] I. Itenberg, Amibes de variétés algébriques et dénombrement de courbes (d’après G. Mikhalkin), Séminaire Bourbaki 2002/03, exposé no 921, Astérisque 294 (2004), 335–361. Zbl1059.14067MR2111649
- [15] I. Itenberg, G. Mikhalkin & E. Shustin, Tropical algebraic geometry, Oberwolfach Seminars 35, Birkhäuser, 2007. Zbl1162.14300MR2292729
- [16] I. Itenberg & O. Y. Viro, Patchworking algebraic curves disproves the Ragsdale conjecture, Math. Intelligencer18 (1996), 19–28. Zbl0876.14017MR1413249
- [17] V. M. Kharlamov, S. Y. Orevkov & E. Shustin, Singularity which has no -smoothing, in The Arnoldfest (Toronto, ON, 1997), Fields Inst. Commun. 24, Amer. Math. Soc., 1999, 273–309. Zbl0978.14048MR1733581
- [18] V. M. Kharlamov & J.-J. Risler, Blowing-up construction of maximal smoothings of real plane curve singularities, in Real analytic and algebraic geometry (Trento, 1992), de Gruyter, 1995, 169–188. Zbl0861.14022MR1320318
- [19] V. M. Kharlamov, J.-J. Risler & E. Shustin, Maximal smoothings of real plane curve singular points, in Topology, ergodic theory, real algebraic geometry, Amer. Math. Soc. Transl. Ser. 2 202, Amer. Math. Soc., 2001, 167–195. Zbl0988.14025MR1819188
- [20] A. G. Kouchnirenko, Polyèdres de Newton et nombres de Milnor, Invent. Math.32 (1976), 1–31. Zbl0328.32007MR419433
- [21] D.-T. Lê & M. Oka, On resolution complexity of plane curves, Kodai Math. J.18 (1995), 1–36. Zbl0844.14010MR1317003
- [22] G. Mikhalkin, Real algebraic curves, the moment map and amoebas, Ann. of Math.151 (2000), 309–326. Zbl1073.14555MR1745011
- [23] G. Mikhalkin & H. Rullgård, Amoebas of maximal area, Int. Math. Res. Not.2001 (2001), 441–451. Zbl0994.14032MR1829380
- [24] J. Milnor, Singular points of complex hypersurfaces, Annals of Math. Studies 61, Princeton Univ. Press, 1968. Zbl0184.48405MR239612
- [25] T. Oda, Convex bodies and algebraic geometry. An introduction to the theory of toric varieties, Ergebnisse Math. Grenzg. 15, Springer, 1988. Zbl0628.52002MR922894
- [26] M. Oka, Geometry of plane curves via toroidal resolution, in Algebraic geometry and singularities (La Rábida, 1991), Progr. Math. 134, Birkhäuser, 1996, 95–121. Zbl0857.14014MR1395177
- [27] M. Oka, Non-degenerate complete intersection singularity, Actualités Mathématiques., Hermann, 1997. Zbl0930.14034MR1483897
- [28] M. Passare & H. Rullgård, Amoebas, Monge-Ampère measures, and triangulations of the Newton polytope, Duke Math. J. 121 (2004), 481–507. Zbl1043.32001MR2040284
- [29] P. Popescu-Pampu, Approximate roots, in Valuation theory and its applications, Vol. II (Saskatoon, SK, 1999), Fields Inst. Commun. 33, Amer. Math. Soc., 2003, 285–321. Zbl1036.13017MR2018562
- [30] J.-J. Risler, Un analogue local du théorème de Harnack, Invent. Math.89 (1987), 119–137. Zbl0672.14020MR892188
- [31] J.-J. Risler, Construction d’hypersurfaces réelles (d’après Viro), Séminaire Bourbaki 1992/93, exposé no 763, Astérisque 216 (1993), 69–86. Zbl0824.14045MR1246393
- [32] E. Shustin & I. Tyomkin, Patchworking singular algebraic curves. I, Israel J. Math. 151 (2006), 125–144. Zbl1128.14019MR2214120
- [33] E. Shustin & I. Tyomkin, Patchworking singular algebraic curves. II, Israel J. Math. 151 (2006), 145–166. Zbl1128.14020MR2214121
- [34] B. Sturmfels, Viro’s theorem for complete intersections, Ann. Scuola Norm. Sup. Pisa Cl. Sci.21 (1994), 377–386. Zbl0826.14032MR1310632
- [35] O. Y. Viro, Gluing of algebraic hypersurfaces, smoothing of singularities and construction of curves, in Proceedings of the Leningrad International Topological Conference (Leningrad 1982), Nauka, 1983, 149–197. Zbl0605.14021
- [36] O. Y. Viro, Gluing of plane real algebraic curves and constructions of curves of degrees and , in Topology (Leningrad, 1982), Lecture Notes in Math. 1060, Springer, 1984, 187–200. Zbl0576.14031MR770238
- [37] O. Y. Viro, Real plane algebraic curves: constructions with controlled topology, Algebra i Analiz 1 (1989), 1–73, English translation: Leningrad Math. J., 1 (1990), 1059–1134. Zbl0732.14026MR1036837
- [38] O. Y. Viro, Patchworking real algebraic varieties, U.U.D.M. Report 42 (Uppsala University, 1994).
- [39] O. Zariski, Le problème des modules pour les branches planes, Hermann, 1986. Zbl0592.14010MR861277
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.