Amoebas of algebraic varieties and curves counting

Ilia Itenberg

Séminaire Bourbaki (2002-2003)

  • Volume: 45, page 335-362
  • ISSN: 0303-1179

Abstract

top
Amoebas of algebraic varieties in ( * ) n are the images of these varieties under the moment map Log : ( * ) n n , Log : ( z 1 , ... , z n ) ( log | z 1 | , ... , log | z n | ) . G. Mikhalkin’s results show the usefulness of amoebas in the study of real and complex algebraic varieties. Amoebas can be deformed to certain polyhedral complexes which are calledtropical algebraic varieties. This deformation gives a possibility to compute Gromov-Witten invariants of the projective plane and other toric surfaces by counting tropical curves.

How to cite

top

Itenberg, Ilia. "Amibes de variétés algébriques et dénombrement de courbes." Séminaire Bourbaki 45 (2002-2003): 335-362. <http://eudml.org/doc/252140>.

@article{Itenberg2002-2003,
abstract = {Les amibesdes variétés algébriques dans $(\mathbb \{C\}^*)^n$ sont les images de ces variétés par l’application des moments $\mathrm \{Log\}:(\mathbb \{C\}^*)^n \rightarrow \mathbb \{R\}^n$, $\mathrm \{Log\}:(z_1, \ldots , z_n) \mapsto (\log |z_1|, \ldots , \log |z_n|)$. Des résultats obtenus par G. Mikhalkin montrent l’utilité des amibes pour l’étude des variétés algébriques réelles et complexes. Les amibes peuvent être déformées en des complexes polyédraux appelésvariétés algébriques tropicales. Cette déformation permet, en particulier, de calculer les invariants de Gromov-Witten du plan projectif et d’autres surfaces toriques en dénombrant des courbes tropicales.},
author = {Itenberg, Ilia},
journal = {Séminaire Bourbaki},
keywords = {amoebas of algebraic varieties; non-archimedian amoebas; tropical geometry; Gromov-Witten invariants},
language = {fre},
pages = {335-362},
publisher = {Association des amis de Nicolas Bourbaki, Société mathématique de France},
title = {Amibes de variétés algébriques et dénombrement de courbes},
url = {http://eudml.org/doc/252140},
volume = {45},
year = {2002-2003},
}

TY - JOUR
AU - Itenberg, Ilia
TI - Amibes de variétés algébriques et dénombrement de courbes
JO - Séminaire Bourbaki
PY - 2002-2003
PB - Association des amis de Nicolas Bourbaki, Société mathématique de France
VL - 45
SP - 335
EP - 362
AB - Les amibesdes variétés algébriques dans $(\mathbb {C}^*)^n$ sont les images de ces variétés par l’application des moments $\mathrm {Log}:(\mathbb {C}^*)^n \rightarrow \mathbb {R}^n$, $\mathrm {Log}:(z_1, \ldots , z_n) \mapsto (\log |z_1|, \ldots , \log |z_n|)$. Des résultats obtenus par G. Mikhalkin montrent l’utilité des amibes pour l’étude des variétés algébriques réelles et complexes. Les amibes peuvent être déformées en des complexes polyédraux appelésvariétés algébriques tropicales. Cette déformation permet, en particulier, de calculer les invariants de Gromov-Witten du plan projectif et d’autres surfaces toriques en dénombrant des courbes tropicales.
LA - fre
KW - amoebas of algebraic varieties; non-archimedian amoebas; tropical geometry; Gromov-Witten invariants
UR - http://eudml.org/doc/252140
ER -

References

top
  1. [1] V.I. Arnol’d – Mathematical methods of classical mechanics, Nauka, Moscou, 1974, en russe ; traduction anglaise : Graduate Texts in Mathematics vol. 60, Springer-Verlag, New York, 1989. Zbl0386.70001
  2. [2] M.F. Atiyah – “Angular momentum, convex polyhedra and algebraic geometry”, Proc. Edinburgh Math. Soc. (2) 26 (1983), p. 121–133. Zbl0521.58026MR705256
  3. [3] G.M. Bergman – “The logarithmic limit set of an algebraic variety”, Trans. Amer. Math. Soc.157 (1971), p. 459–469. Zbl0212.53001MR280489
  4. [4] L. Caporaso & J. Harris – “Counting plane curves of any genus”, Invent. Math.131 (1998), p. 345–392. Zbl0934.14040MR1608583
  5. [5] A. Degtyarev & V. Kharlamov – “Topological properties of real algebraic varieties : Rokhlin’s way”, Russian Math. Surveys 55 (2000), no. 4, p. 735–814. Zbl1014.14030MR1786731
  6. [6] M. Forsberg, M. Passare & A. Tsikh – “Laurent determinants and arrangements of hyperplane amoebas”, Adv. in Math.151 (2000), p. 45–70. Zbl1002.32018MR1752241
  7. [7] W. Fulton – Introduction to Toric Varieties, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, 1993. Zbl0813.14039MR1234037
  8. [8] I. Gelfand, M.M. Kapranov & A.V. Zelevinsky – Discriminants, resultants and multidimensional determinants, Birkhäuser, Boston, 1994. Zbl1138.14001MR1264417
  9. [9] A. Henriques – “An analogue of convexity for complements of amoebas of varieties of higher codimensions”, Prépublication, Berkeley, 2001. Zbl1053.14065
  10. [10] D. Hilbert – “Mathematische Probleme”, Arch. Math. Phys. (3) 1 (1901), p. 213–237. JFM32.0084.05
  11. [11] I. Itenberg, V. Kharlamov & E. Shustin – “Welschinger invariant and enumeration of real rational curves”, Internat. Math. Res. Notices49 (2003), p. 2639–2653. Zbl1083.14523MR2012521
  12. [12] M.M. Kapranov – “Amoebas over non-Archimedian fields”, Prépublication, 2000. 
  13. [13] V. Kharlamov & S. Orevkov – “Asymptotic growth of the number of classes of real plane algebraic curves as the degree grows”, Zapiski Nauchn. Semin. POMI 266 (2000), p. 218–233, en russe ; traduction anglaise : J. of Math. Sciences 113 (2003), p. 666-674. Zbl1026.14017MR1774655
  14. [14] —, “The number of trees half of whose vertices are leaves and asymptotic enumeration of plane real algebraic curves”, Prépublication arXiv : math.AG/0301245, 2003. Zbl1053.14064
  15. [15] M. Kontsevitch & Yu. Manin – “Gromov-Witten classes, quantum cohomology and enumerative geometry”, Comm. Math. Phys.164 (1994), p. 525–562. Zbl0853.14020MR1291244
  16. [16] M. Kontsevitch & Ya. Soibelman – “Homological mirror symmetry and torus fibrations”, Prépublication arXiv : math.SG/0011041, 2000. Zbl1072.14046MR1882331
  17. [17] G.L. Litvinov & V.P. Maslov – “The correspondence principle for Idempotent Calculus and some computer applications”, in Idempotency (J. Gunawardena, ’ed.), Cambridge University Press, Cambridge, 1998, p. 420–443. Zbl0897.68050MR1608383
  18. [18] G.L. Litvinov, V.P. Maslov & A.N. Sobolevskii – “Idempotent Mathematics and Interval Analysis”, Prépublication arXiv : math.SC/9911126, 1999. Zbl1014.49020MR1886547
  19. [19] G. Mikhalkin – “Real algebraic curves, moment map and amoebas”, Ann. of Math.151 (2000), p. 309–326. Zbl1073.14555MR1745011
  20. [20] —, “Amoebas of algebraic varieties”, Prépublication arXiv : math.AG/0108225, 2001. 
  21. [21] —, “Decomposition into pairs-of-pants for complex algebraic hypersurfaces”, Prépublication arXiv : math.GT/0205011, 2002. 
  22. [22] —, “Counting curves via lattice paths in polygons”, C. R. Acad. Sci. Paris Sér. I Math.336 (2003), p. 629–634. Zbl1027.14026MR1988122
  23. [23] —, “Enumerative tropical algebraic geometry in 2 ”, Prépublication arXiv : math.AG/0312530, 2003. 
  24. [24] G. Mikhalkin & H. Rullård – “Amoebas of maximal area”, Internat. Math. Res. Notices9 (2001), p. 441–451. Zbl0994.14032MR1829380
  25. [25] G. Mikhalkin & O. Viro – “Amoebas of algebraic varieties”, en préparation. 
  26. [26] M. Passare & H. Rullård – “Amoebas, Monge-Ampère measures, and triangulations of the Newton polytope”, Prépublication, Université de Stockholm, 2000. Zbl1043.32001
  27. [27] J.-E. Pin – “Tropical semirings”, in Idempotency (Bristol 1994), Publ. Newton Inst., vol. 11, Cambridge Univ. Press, Cambridge, 1998, p. 50–69. Zbl0909.16028MR1608374
  28. [28] J.-J. Risler – “Construction d’hypersurfaces réelles [d’après Viro]”, in Sém. Bourbaki (1992/93), Astérisque, vol. 216, Société Mathématique de France, 1993, exp. no 763, p. 69–86. Zbl0824.14045MR1246393
  29. [29] L. Ronkin – “On zeroes of almost periodic functions generated by holomorphic functions in a multicircular domain”, in Complex Analysis in Modern Mathematics, Fazis, Moscou, 2000, p. 243–256. Zbl1049.32014
  30. [30] H. Rullård – “Stratification des espaces de polynômes de Laurent et la structure de leurs amibes”, C. R. Acad. Sci. Paris Sér. I Math.331 (2000), p. 355–358. Zbl0965.32003MR1784913
  31. [31] —, “Polynomial amoebas and convexity”, Prépublication, Université de Stockholm, 2001. 
  32. [32] E. Shustin – “Patchworking singular algebraic curves, non-Archimedean amoebas and enumerative geometry”, Prépublication arXiv : math.AG/0211278, 2002. Zbl1128.14019MR1241875
  33. [33] F. Sottile – “Enumerative Real Algebraic Geometry”, Prépublication arXiv : math.AG/0107179, 2001. Zbl1081.14080MR1995019
  34. [34] B. Sturmfels – “On the Newton polytope of the resultant”, J. Algebraic Combin.3 (1994), p. 207–236. Zbl0798.05074MR1268576
  35. [35] —, Solving systems of polynomial equations, CBMS Regional Conference Series in Mathematics, American Mathematical Society, Providence, RI, 2002. Zbl1101.13040MR1925796
  36. [36] O. Viro – “Dequantization of real algebraic geometry on a logarithmic paper”, in Proceedings of the European Congress of Mathematicians (2000). Zbl1024.14026
  37. [37] —, “Gluing of algebraic hypersurfaces, smoothing of singularities and construction of curves”, in Proc. Leningrad Int. Topological Conf., Leningrad, 1982, Nauka, Leningrad, 1983, en russe, p. 149–197. Zbl0605.14021
  38. [38] —, “Gluing of plane real algebraic curves and construction of curves of degrees 6 and 7 ”, Lect. Notes in Math., vol. 1060, Springer, Berlin etc., 1984, p. 187–200. Zbl0576.14031MR770238
  39. [39] —, “Progress in the topology of real algebraic varieties over the last six years”, Russian Math. Surveys 41 (1986), no. 3, p. 55–82. Zbl0619.14015
  40. [40] R. Walker – Algebraic curves, Princeton Univ. Press, Princeton, N.J., 1950. Zbl0039.37701MR33083
  41. [41] J.-Y. Welschinger – “Invariants of real rational symplectic 4-manifolds and lower bounds in real enumerative geometry”, C. R. Acad. Sci. Paris Sér. I Math.336 (2003), p. 341–344. Zbl1042.57018MR1976315
  42. [42] —, “Invariants of real symplectic 4-manifolds and lower bounds in real enumerative geometry”, Prépublication arXiv : math.AG/0303145, 2003. Zbl1082.14052
  43. [43] G. Wilson – “Hilbert’s sixteenth problem”, Topology 17 (1978), no. 1, p. 53–73. Zbl0394.57001MR498591

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.