Size minimizing surfaces

Thierry De Pauw

Annales scientifiques de l'École Normale Supérieure (2009)

  • Volume: 42, Issue: 1, page 37-101
  • ISSN: 0012-9593

Abstract

top
We prove a new existence theorem pertaining to the Plateau problem in 3 -dimensional Euclidean space. We compare the approach of E.R. Reifenberg with that of H. Federer and W.H. Fleming. A relevant technical step consists in showing that compact rectifiable surfaces are approximatable in Hausdorff measure and in Hausdorff distance by locally acyclic surfaces having the same boundary.

How to cite

top

Pauw, Thierry De. "Size minimizing surfaces." Annales scientifiques de l'École Normale Supérieure 42.1 (2009): 37-101. <http://eudml.org/doc/272198>.

@article{Pauw2009,
abstract = {We prove a new existence theorem pertaining to the Plateau problem in $3$-dimensional Euclidean space. We compare the approach of E.R. Reifenberg with that of H. Federer and W.H. Fleming. A relevant technical step consists in showing that compact rectifiable surfaces are approximatable in Hausdorff measure and in Hausdorff distance by locally acyclic surfaces having the same boundary.},
author = {Pauw, Thierry De},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Plateau problem; rectiviable current; smooth compact 1-dimensional submanifold ; algebraic boundary},
language = {eng},
number = {1},
pages = {37-101},
publisher = {Société mathématique de France},
title = {Size minimizing surfaces},
url = {http://eudml.org/doc/272198},
volume = {42},
year = {2009},
}

TY - JOUR
AU - Pauw, Thierry De
TI - Size minimizing surfaces
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2009
PB - Société mathématique de France
VL - 42
IS - 1
SP - 37
EP - 101
AB - We prove a new existence theorem pertaining to the Plateau problem in $3$-dimensional Euclidean space. We compare the approach of E.R. Reifenberg with that of H. Federer and W.H. Fleming. A relevant technical step consists in showing that compact rectifiable surfaces are approximatable in Hausdorff measure and in Hausdorff distance by locally acyclic surfaces having the same boundary.
LA - eng
KW - Plateau problem; rectiviable current; smooth compact 1-dimensional submanifold ; algebraic boundary
UR - http://eudml.org/doc/272198
ER -

References

top
  1. [1] W. K. Allard, On the first variation of a varifold: boundary behavior, Ann. of Math.101 (1975), 418–446. Zbl0319.49026MR397520
  2. [2] K. A. Brakke, The surface evolver, Experiment. Math.1 (1992), 141–165. Zbl0769.49033MR1203871
  3. [3] R. Courant, Dirichlet’s Principle, Conformal Mapping, and Minimal Surfaces, Interscience Publishers, Inc., 1950. Zbl0040.34603MR36317
  4. [4] T. De Pauw, Nearly flat almost monotone measures are big pieces of Lipschitz graphs, J. Geom. Anal.12 (2002), 29–61. Zbl1025.49027MR1881290
  5. [5] T. De Pauw, Comparing homologies: Čech’s theory, singular chains, integral flat chains and integral currents, Rev. Mat. Iberoam.23 (2007), 143–189. Zbl1246.49038MR2351129
  6. [6] T. De Pauw, Concentrated, nearly monotonic, epiperimetric measures in Euclidean space, J. Differential Geom.77 (2007), 77–134. Zbl1151.28004MR2344355
  7. [7] T. De Pauw & R. Hardt, Size minimization and approximating problems, Calc. Var. Partial Differential Equations17 (2003), 405–442. Zbl1022.49026MR1993962
  8. [8] S. Eilenberg & N. Steenrod, Foundations of algebraic topology, Princeton University Press, 1952. Zbl0047.41402MR50886
  9. [9] L. C. Evans & R. F. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, 1992. Zbl0804.28001MR1158660
  10. [10] H. Federer, Curvature measures, Trans. Amer. Math. Soc.93 (1959), 418–491. Zbl0089.38402MR110078
  11. [11] H. Federer, Geometric measure theory, Die Grund. Math. Wiss., Band 153, Springer, 1969. Zbl0176.00801MR257325
  12. [12] H. Federer & W. H. Fleming, Normal and integral currents, Ann. of Math.72 (1960), 458–520. Zbl0187.31301MR123260
  13. [13] V. Feuvrier, Un résultat d’existence pour les ensembles minimaux par optimisation sur des grilles polyédrales, Thèse de doctorat, Université d’Orsay, 2008. 
  14. [14] W. H. Fleming, An example in the problem of least area, Proc. Amer. Math. Soc.7 (1956), 1063–1074. Zbl0078.13804MR82046
  15. [15] W. H. Fleming, On the oriented Plateau problem, Rend. Circ. Mat. Palermo11 (1962), 69–90. Zbl0107.31304MR157263
  16. [16] R. L. Foote, Regularity of the distance function, Proc. Amer. Math. Soc.92 (1984), 153–155. Zbl0528.53005MR749908
  17. [17] E. Lamarle, Sur la stabilité des systèmes liquides en lames minces, Mémoires de l’Académie Royale de Belgique 35 (1864). 
  18. [18] G. Lawlor & F. Morgan, Curvy slicing proves that triple junctions locally minimize area, J. Differential Geom.44 (1996), 514–528. Zbl0870.53006MR1431003
  19. [19] F. Morgan, Size-minimizing rectifiable currents, Invent. Math.96 (1989), 333–348. Zbl0645.49024MR989700
  20. [20] F. Morgan, Geometric measure theory, a beginner’s guide, third éd., Academic Press Inc., 2000. Zbl0671.49043MR1775760
  21. [21] D. Pavlica, personal communication. 
  22. [22] J. Plateau, Statique expérimentale et théorique des liquides soumis aux seules forces moléculaires, Gauthier-Villars, 1873. JFM06.0516.03
  23. [23] E. R. Reifenberg, Solution of the Plateau Problem for m -dimensional surfaces of varying topological type, Acta Math.104 (1960), 1–92. Zbl0099.08503MR114145
  24. [24] E. R. Reifenberg, An epiperimetric inequality related to the analyticity of minimal surfaces, Ann. of Math.80 (1964), 1–14. Zbl0151.16701MR171197
  25. [25] G. de Rham, Variétés différentiables. Formes, courants, formes harmoniques, Hermann, 1973. Zbl0284.58001
  26. [26] L. Simon, Lectures on geometric measure theory, Proceedings of the Centre for Mathematical Analysis, Australian National University, 1983. Zbl0546.49019MR756417
  27. [27] J. E. Taylor, The structure of singularities in soap-bubble-like and soap-film-like minimal surfaces, Ann. of Math.103 (1976), 489–539. Zbl0335.49032MR428181
  28. [28] H. Whitney, Geometric integration theory, Princeton University Press, 1957. Zbl0083.28204MR87148

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.