Size minimizing surfaces
Annales scientifiques de l'École Normale Supérieure (2009)
- Volume: 42, Issue: 1, page 37-101
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topPauw, Thierry De. "Size minimizing surfaces." Annales scientifiques de l'École Normale Supérieure 42.1 (2009): 37-101. <http://eudml.org/doc/272198>.
@article{Pauw2009,
abstract = {We prove a new existence theorem pertaining to the Plateau problem in $3$-dimensional Euclidean space. We compare the approach of E.R. Reifenberg with that of H. Federer and W.H. Fleming. A relevant technical step consists in showing that compact rectifiable surfaces are approximatable in Hausdorff measure and in Hausdorff distance by locally acyclic surfaces having the same boundary.},
author = {Pauw, Thierry De},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Plateau problem; rectiviable current; smooth compact 1-dimensional submanifold ; algebraic boundary},
language = {eng},
number = {1},
pages = {37-101},
publisher = {Société mathématique de France},
title = {Size minimizing surfaces},
url = {http://eudml.org/doc/272198},
volume = {42},
year = {2009},
}
TY - JOUR
AU - Pauw, Thierry De
TI - Size minimizing surfaces
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2009
PB - Société mathématique de France
VL - 42
IS - 1
SP - 37
EP - 101
AB - We prove a new existence theorem pertaining to the Plateau problem in $3$-dimensional Euclidean space. We compare the approach of E.R. Reifenberg with that of H. Federer and W.H. Fleming. A relevant technical step consists in showing that compact rectifiable surfaces are approximatable in Hausdorff measure and in Hausdorff distance by locally acyclic surfaces having the same boundary.
LA - eng
KW - Plateau problem; rectiviable current; smooth compact 1-dimensional submanifold ; algebraic boundary
UR - http://eudml.org/doc/272198
ER -
References
top- [1] W. K. Allard, On the first variation of a varifold: boundary behavior, Ann. of Math.101 (1975), 418–446. Zbl0319.49026MR397520
- [2] K. A. Brakke, The surface evolver, Experiment. Math.1 (1992), 141–165. Zbl0769.49033MR1203871
- [3] R. Courant, Dirichlet’s Principle, Conformal Mapping, and Minimal Surfaces, Interscience Publishers, Inc., 1950. Zbl0040.34603MR36317
- [4] T. De Pauw, Nearly flat almost monotone measures are big pieces of Lipschitz graphs, J. Geom. Anal.12 (2002), 29–61. Zbl1025.49027MR1881290
- [5] T. De Pauw, Comparing homologies: Čech’s theory, singular chains, integral flat chains and integral currents, Rev. Mat. Iberoam.23 (2007), 143–189. Zbl1246.49038MR2351129
- [6] T. De Pauw, Concentrated, nearly monotonic, epiperimetric measures in Euclidean space, J. Differential Geom.77 (2007), 77–134. Zbl1151.28004MR2344355
- [7] T. De Pauw & R. Hardt, Size minimization and approximating problems, Calc. Var. Partial Differential Equations17 (2003), 405–442. Zbl1022.49026MR1993962
- [8] S. Eilenberg & N. Steenrod, Foundations of algebraic topology, Princeton University Press, 1952. Zbl0047.41402MR50886
- [9] L. C. Evans & R. F. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, 1992. Zbl0804.28001MR1158660
- [10] H. Federer, Curvature measures, Trans. Amer. Math. Soc.93 (1959), 418–491. Zbl0089.38402MR110078
- [11] H. Federer, Geometric measure theory, Die Grund. Math. Wiss., Band 153, Springer, 1969. Zbl0176.00801MR257325
- [12] H. Federer & W. H. Fleming, Normal and integral currents, Ann. of Math.72 (1960), 458–520. Zbl0187.31301MR123260
- [13] V. Feuvrier, Un résultat d’existence pour les ensembles minimaux par optimisation sur des grilles polyédrales, Thèse de doctorat, Université d’Orsay, 2008.
- [14] W. H. Fleming, An example in the problem of least area, Proc. Amer. Math. Soc.7 (1956), 1063–1074. Zbl0078.13804MR82046
- [15] W. H. Fleming, On the oriented Plateau problem, Rend. Circ. Mat. Palermo11 (1962), 69–90. Zbl0107.31304MR157263
- [16] R. L. Foote, Regularity of the distance function, Proc. Amer. Math. Soc.92 (1984), 153–155. Zbl0528.53005MR749908
- [17] E. Lamarle, Sur la stabilité des systèmes liquides en lames minces, Mémoires de l’Académie Royale de Belgique 35 (1864).
- [18] G. Lawlor & F. Morgan, Curvy slicing proves that triple junctions locally minimize area, J. Differential Geom.44 (1996), 514–528. Zbl0870.53006MR1431003
- [19] F. Morgan, Size-minimizing rectifiable currents, Invent. Math.96 (1989), 333–348. Zbl0645.49024MR989700
- [20] F. Morgan, Geometric measure theory, a beginner’s guide, third éd., Academic Press Inc., 2000. Zbl0671.49043MR1775760
- [21] D. Pavlica, personal communication.
- [22] J. Plateau, Statique expérimentale et théorique des liquides soumis aux seules forces moléculaires, Gauthier-Villars, 1873. JFM06.0516.03
- [23] E. R. Reifenberg, Solution of the Plateau Problem for -dimensional surfaces of varying topological type, Acta Math.104 (1960), 1–92. Zbl0099.08503MR114145
- [24] E. R. Reifenberg, An epiperimetric inequality related to the analyticity of minimal surfaces, Ann. of Math.80 (1964), 1–14. Zbl0151.16701MR171197
- [25] G. de Rham, Variétés différentiables. Formes, courants, formes harmoniques, Hermann, 1973. Zbl0284.58001
- [26] L. Simon, Lectures on geometric measure theory, Proceedings of the Centre for Mathematical Analysis, Australian National University, 1983. Zbl0546.49019MR756417
- [27] J. E. Taylor, The structure of singularities in soap-bubble-like and soap-film-like minimal surfaces, Ann. of Math.103 (1976), 489–539. Zbl0335.49032MR428181
- [28] H. Whitney, Geometric integration theory, Princeton University Press, 1957. Zbl0083.28204MR87148
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.