Crystals of Fock spaces and cyclotomic rational double affine Hecke algebras

Peng Shan

Annales scientifiques de l'École Normale Supérieure (2011)

  • Volume: 44, Issue: 1, page 147-182
  • ISSN: 0012-9593

Abstract

top
We define the i -restriction and i -induction functors on the category 𝒪 of the cyclotomic rational double affine Hecke algebras. This yields a crystal on the set of isomorphism classes of simple modules, which is isomorphic to the crystal of a Fock space.

How to cite

top

Shan, Peng. "Crystals of Fock spaces and cyclotomic rational double affine Hecke algebras." Annales scientifiques de l'École Normale Supérieure 44.1 (2011): 147-182. <http://eudml.org/doc/272214>.

@article{Shan2011,
abstract = {We define the $i$-restriction and $i$-induction functors on the category $\mathcal \{O\}$ of the cyclotomic rational double affine Hecke algebras. This yields a crystal on the set of isomorphism classes of simple modules, which is isomorphic to the crystal of a Fock space.},
author = {Shan, Peng},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Hecke algebra; induction; restriction; crystal; Fock space; categorification},
language = {eng},
number = {1},
pages = {147-182},
publisher = {Société mathématique de France},
title = {Crystals of Fock spaces and cyclotomic rational double affine Hecke algebras},
url = {http://eudml.org/doc/272214},
volume = {44},
year = {2011},
}

TY - JOUR
AU - Shan, Peng
TI - Crystals of Fock spaces and cyclotomic rational double affine Hecke algebras
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2011
PB - Société mathématique de France
VL - 44
IS - 1
SP - 147
EP - 182
AB - We define the $i$-restriction and $i$-induction functors on the category $\mathcal {O}$ of the cyclotomic rational double affine Hecke algebras. This yields a crystal on the set of isomorphism classes of simple modules, which is isomorphic to the crystal of a Fock space.
LA - eng
KW - Hecke algebra; induction; restriction; crystal; Fock space; categorification
UR - http://eudml.org/doc/272214
ER -

References

top
  1. [1] S. Ariki, On the decomposition numbers of the Hecke algebra of G ( m , 1 , n ) , J. Math. Kyoto Univ.36 (1996), 789–808. Zbl0888.20011MR1443748
  2. [2] S. Ariki, Representations of quantum algebras and combinatorics of Young tableaux, University Lecture Series 26, Amer. Math. Soc., 2002. Zbl1003.17008MR1911030
  3. [3] A. Berenstein & D. Kazhdan, Geometric and unipotent crystals. II. From unipotent bicrystals to crystal bases, in Quantum groups, Contemp. Math. 433, Amer. Math. Soc., 2007, 13–88. Zbl1154.14035MR2349617
  4. [4] R. Bezrukavnikov & P. Etingof, Parabolic induction and restriction functors for rational Cherednik algebras, Selecta Math. (N.S.) 14 (2009), 397–425. Zbl1226.20002
  5. [5] M. Broué, G. Malle & J. Michel, Towards spetses. I, Transform. Groups 4 (1999), 157–218. Zbl0972.20024
  6. [6] M. Broué, G. Malle & R. Rouquier, Complex reflection groups, braid groups, Hecke algebras, J. reine angew. Math. 500 (1998), 127–190. Zbl0921.20046
  7. [7] J. Chuang & R. Rouquier, Derived equivalences for symmetric groups and 𝔰𝔩 2 -categorification, Ann. of Math.167 (2008), 245–298. Zbl1144.20001
  8. [8] W. Crawley-Boevey & M. P. Holland, Noncommutative deformations of Kleinian singularities, Duke Math. J.92 (1998), 605–635. Zbl0974.16007
  9. [9] C. W. Curtis & I. Reiner, Methods of representation theory. Vol. II, with applications to finite groups and orders, Pure and Applied Mathematics, John Wiley & Sons Inc., 1987. Zbl0616.20001
  10. [10] V. Ginzburg, N. Guay, E. Opdam & R. Rouquier, On the category 𝒪 for rational Cherednik algebras, Invent. Math.154 (2003), 617–651. Zbl1071.20005
  11. [11] M. Jimbo, K. C. Misra, T. Miwa & M. Okado, Combinatorics of representations of U q ( 𝔰𝔩 ^ ( n ) ) at q = 0 , Comm. Math. Phys.136 (1991), 543–566. Zbl0749.17015
  12. [12] M. Kashiwara & T. Kawai, On holonomic systems of microdifferential equations. III. Systems with regular singularities, Publ. Res. Inst. Math. Sci. 17 (1981), 813–979. Zbl0505.58033
  13. [13] S. Lyle & A. Mathas, Blocks of cyclotomic Hecke algebras, Adv. Math.216 (2007), 854–878. Zbl1156.20006
  14. [14] R. Rouquier, q -Schur algebras and complex reflection groups, Mosc. Math. J.8 (2008), 119–158. Zbl1213.20007MR2422270
  15. [15] R. Rouquier, 2-Kac-Moody algebras, preprint arXiv:0812.5023. Zbl1247.20002
  16. [16] D. Uglov, Canonical bases of higher-level q -deformed Fock spaces and Kazhdan-Lusztig polynomials, in Physical combinatorics (Kyoto, 1999), Progr. Math. 191, Birkhäuser, 2000, 249–299. Zbl0963.17012MR1768086
  17. [17] X. Yvonne, A conjecture for q -decomposition matrices of cyclotomic v -Schur algebras, J. Algebra304 (2006), 419–456. Zbl1130.20009MR2256400

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.