Crystals of Fock spaces and cyclotomic rational double affine Hecke algebras
Annales scientifiques de l'École Normale Supérieure (2011)
- Volume: 44, Issue: 1, page 147-182
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topShan, Peng. "Crystals of Fock spaces and cyclotomic rational double affine Hecke algebras." Annales scientifiques de l'École Normale Supérieure 44.1 (2011): 147-182. <http://eudml.org/doc/272214>.
@article{Shan2011,
abstract = {We define the $i$-restriction and $i$-induction functors on the category $\mathcal \{O\}$ of the cyclotomic rational double affine Hecke algebras. This yields a crystal on the set of isomorphism classes of simple modules, which is isomorphic to the crystal of a Fock space.},
author = {Shan, Peng},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Hecke algebra; induction; restriction; crystal; Fock space; categorification},
language = {eng},
number = {1},
pages = {147-182},
publisher = {Société mathématique de France},
title = {Crystals of Fock spaces and cyclotomic rational double affine Hecke algebras},
url = {http://eudml.org/doc/272214},
volume = {44},
year = {2011},
}
TY - JOUR
AU - Shan, Peng
TI - Crystals of Fock spaces and cyclotomic rational double affine Hecke algebras
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2011
PB - Société mathématique de France
VL - 44
IS - 1
SP - 147
EP - 182
AB - We define the $i$-restriction and $i$-induction functors on the category $\mathcal {O}$ of the cyclotomic rational double affine Hecke algebras. This yields a crystal on the set of isomorphism classes of simple modules, which is isomorphic to the crystal of a Fock space.
LA - eng
KW - Hecke algebra; induction; restriction; crystal; Fock space; categorification
UR - http://eudml.org/doc/272214
ER -
References
top- [1] S. Ariki, On the decomposition numbers of the Hecke algebra of , J. Math. Kyoto Univ.36 (1996), 789–808. Zbl0888.20011MR1443748
- [2] S. Ariki, Representations of quantum algebras and combinatorics of Young tableaux, University Lecture Series 26, Amer. Math. Soc., 2002. Zbl1003.17008MR1911030
- [3] A. Berenstein & D. Kazhdan, Geometric and unipotent crystals. II. From unipotent bicrystals to crystal bases, in Quantum groups, Contemp. Math. 433, Amer. Math. Soc., 2007, 13–88. Zbl1154.14035MR2349617
- [4] R. Bezrukavnikov & P. Etingof, Parabolic induction and restriction functors for rational Cherednik algebras, Selecta Math. (N.S.) 14 (2009), 397–425. Zbl1226.20002
- [5] M. Broué, G. Malle & J. Michel, Towards spetses. I, Transform. Groups 4 (1999), 157–218. Zbl0972.20024
- [6] M. Broué, G. Malle & R. Rouquier, Complex reflection groups, braid groups, Hecke algebras, J. reine angew. Math. 500 (1998), 127–190. Zbl0921.20046
- [7] J. Chuang & R. Rouquier, Derived equivalences for symmetric groups and -categorification, Ann. of Math.167 (2008), 245–298. Zbl1144.20001
- [8] W. Crawley-Boevey & M. P. Holland, Noncommutative deformations of Kleinian singularities, Duke Math. J.92 (1998), 605–635. Zbl0974.16007
- [9] C. W. Curtis & I. Reiner, Methods of representation theory. Vol. II, with applications to finite groups and orders, Pure and Applied Mathematics, John Wiley & Sons Inc., 1987. Zbl0616.20001
- [10] V. Ginzburg, N. Guay, E. Opdam & R. Rouquier, On the category for rational Cherednik algebras, Invent. Math.154 (2003), 617–651. Zbl1071.20005
- [11] M. Jimbo, K. C. Misra, T. Miwa & M. Okado, Combinatorics of representations of at , Comm. Math. Phys.136 (1991), 543–566. Zbl0749.17015
- [12] M. Kashiwara & T. Kawai, On holonomic systems of microdifferential equations. III. Systems with regular singularities, Publ. Res. Inst. Math. Sci. 17 (1981), 813–979. Zbl0505.58033
- [13] S. Lyle & A. Mathas, Blocks of cyclotomic Hecke algebras, Adv. Math.216 (2007), 854–878. Zbl1156.20006
- [14] R. Rouquier, -Schur algebras and complex reflection groups, Mosc. Math. J.8 (2008), 119–158. Zbl1213.20007MR2422270
- [15] R. Rouquier, 2-Kac-Moody algebras, preprint arXiv:0812.5023. Zbl1247.20002
- [16] D. Uglov, Canonical bases of higher-level -deformed Fock spaces and Kazhdan-Lusztig polynomials, in Physical combinatorics (Kyoto, 1999), Progr. Math. 191, Birkhäuser, 2000, 249–299. Zbl0963.17012MR1768086
- [17] X. Yvonne, A conjecture for -decomposition matrices of cyclotomic -Schur algebras, J. Algebra304 (2006), 419–456. Zbl1130.20009MR2256400
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.