Local gradient estimates of -harmonic functions, -flow, and an entropy formula
Annales scientifiques de l'École Normale Supérieure (2009)
- Volume: 42, Issue: 1, page 1-36
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topKotschwar, Brett, and Ni, Lei. "Local gradient estimates of $p$-harmonic functions, $1/H$-flow, and an entropy formula." Annales scientifiques de l'École Normale Supérieure 42.1 (2009): 1-36. <http://eudml.org/doc/272232>.
@article{Kotschwar2009,
abstract = {In the first part of this paper, we prove local interior and boundary gradient estimates for $p$-harmonic functions on general Riemannian manifolds. With these estimates, following the strategy in recent work of R. Moser, we prove an existence theorem for weak solutions to the level set formulation of the $1/H$ (inverse mean curvature) flow for hypersurfaces in ambient manifolds satisfying a sharp volume growth assumption. In the second part of this paper, we consider two parabolic analogues of the $p$-harmonic equation and prove sharp Li-Yau type gradient estimates for positive solutions to these equations on manifolds of nonnegative Ricci curvature. For one of these equations, we also prove an entropy monotonicity formula generalizing an earlier such formula of the second author for the linear heat equation. As an application of this formula, we show that a complete Riemannian manifold with nonnegative Ricci curvature and sharp $L^p$-logarithmic Sobolev inequality must be isometric to Euclidean space.},
author = {Kotschwar, Brett, Ni, Lei},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {$p$-harmonic functions; inverse mean curvature flow; entropy monotonicity formula},
language = {eng},
number = {1},
pages = {1-36},
publisher = {Société mathématique de France},
title = {Local gradient estimates of $p$-harmonic functions, $1/H$-flow, and an entropy formula},
url = {http://eudml.org/doc/272232},
volume = {42},
year = {2009},
}
TY - JOUR
AU - Kotschwar, Brett
AU - Ni, Lei
TI - Local gradient estimates of $p$-harmonic functions, $1/H$-flow, and an entropy formula
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2009
PB - Société mathématique de France
VL - 42
IS - 1
SP - 1
EP - 36
AB - In the first part of this paper, we prove local interior and boundary gradient estimates for $p$-harmonic functions on general Riemannian manifolds. With these estimates, following the strategy in recent work of R. Moser, we prove an existence theorem for weak solutions to the level set formulation of the $1/H$ (inverse mean curvature) flow for hypersurfaces in ambient manifolds satisfying a sharp volume growth assumption. In the second part of this paper, we consider two parabolic analogues of the $p$-harmonic equation and prove sharp Li-Yau type gradient estimates for positive solutions to these equations on manifolds of nonnegative Ricci curvature. For one of these equations, we also prove an entropy monotonicity formula generalizing an earlier such formula of the second author for the linear heat equation. As an application of this formula, we show that a complete Riemannian manifold with nonnegative Ricci curvature and sharp $L^p$-logarithmic Sobolev inequality must be isometric to Euclidean space.
LA - eng
KW - $p$-harmonic functions; inverse mean curvature flow; entropy monotonicity formula
UR - http://eudml.org/doc/272232
ER -
References
top- [1] D. Bakry, D. Concordet & M. Ledoux, Optimal heat kernel bounds under logarithmic Sobolev inequalities, ESAIM Probab. Statist. 1 (1995/97), 391–407. Zbl0898.58052MR1486642
- [2] G. I. Barenblatt, On self-similar motions of a compressible fluid in a porous medium, Akad. Nauk SSSR. Prikl. Mat. Meh.16 (1952), 679–698. Zbl0047.19204MR52948
- [3] W. Beckner, Geometric asymptotics and the logarithmic Sobolev inequality, Forum Math.11 (1999), 105–137. Zbl0917.58049MR1673903
- [4] S. Bobkov, A functional form of the isoperimetric inequality for the Gaussian measure, J. Funct. Anal.135 (1996), 39–49. Zbl0838.60013MR1367623
- [5] S. Y. Cheng & S.-T. Yau, Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math.28 (1975), 333–354. Zbl0312.53031MR385749
- [6] B. Chow, S.-C. Chu, D. Glickenstein, C. Guenther, J. Isenberg, T. Ivey, D. Knopf, P. Lu, F. Luo & L. Ni, The Ricci flow: techniques and applications. Part I: Geometric aspects, Mathematical Surveys and Monographs 135, Amer. Math. Soc., 2007. Zbl1157.53034MR2302600
- [7] B. Chow, S.-C. Chu, D. Glickenstein, C. Guenther, J. Isenberg, T. Ivey, D. Knopf, P. Lu, F. Luo & L. Ni, The Ricci flow: techniques and applications. Part II: Analytic aspects, Mathematical Surveys and Monographs 144, Amer. Math. Soc., 2008. Zbl1157.53035MR2365237
- [8] M. Del Pino & J. Dolbeault, The optimal Euclidean -Sobolev logarithmic inequality, J. Funct. Anal.197 (2003), 151–161. Zbl1091.35029MR1957678
- [9] M. Del Pino, J. Dolbeault & I. Gentil, Nonlinear diffusions, hypercontractivity and the optimal -Euclidean logarithmic Sobolev inequality, J. Math. Anal. Appl.293 (2004), 375–388. Zbl1058.35124MR2053885
- [10] K. Ecker, Logarithmic Sobolev inequalities on submanifolds of Euclidean space, J. reine angew. Math. 522 (2000), 105–118. Zbl0952.46021MR1758578
- [11] J. R. Esteban & J. L. Vázquez, Homogeneous diffusion in with power-like nonlinear diffusivity, Arch. Rational Mech. Anal.103 (1988), 39–80. Zbl0683.76073MR946969
- [12] J. R. Esteban & J. L. Vázquez, Régularité des solutions positives de l’équation parabolique -laplacienne, C. R. Acad. Sci. Paris Sér. I Math.310 (1990), 105–110. Zbl0708.35043MR1044625
- [13] L. C. Evans, Entropy and partial differential equations, lecture notes at UC Berkeley.
- [14] L. C. Evans & H. Ishii, A PDE approach to some asymptotic problems concerning random differential equations with small noise intensities, Ann. Inst. H. Poincaré Anal. Non Linéaire2 (1985), 1–20. Zbl0601.60076MR781589
- [15] M. Feldman, T. Ilmanen & L. Ni, Entropy and reduced distance for Ricci expanders, J. Geom. Anal.15 (2005), 49–62. Zbl1071.53040MR2132265
- [16] I. Gentil, The general optimal -Euclidean logarithmic Sobolev inequality by Hamilton-Jacobi equations, J. Funct. Anal.202 (2003), 591–599. Zbl1173.35424MR1990539
- [17] R. E. Greene & H. Wu, Function theory on manifolds which possess a pole, Lecture Notes in Math. 699, Springer, 1979. Zbl0414.53043MR521983
- [18] R. S. Hamilton, The formation of singularities in the Ricci flow, in Surveys in differential geometry, Vol. II (Cambridge, MA, 1993), Int. Press, Cambridge, MA, 1995, 7–136. Zbl0867.53030MR1375255
- [19] B. Hein, A homotopy approach to solving the inverse mean curvature flow, Calc. Var. Partial Differential Equations28 (2007), 249–273. Zbl1105.35055MR2284568
- [20] I. Holopainen, Volume growth, Green’s functions, and parabolicity of ends, Duke Math. J. 97 (1999), 319–346. Zbl0955.31003MR1682233
- [21] G. Huisken & T. Ilmanen, The inverse mean curvature flow and the Riemannian Penrose inequality, J. Differential Geom.59 (2001), 353–437. Zbl1055.53052MR1916951
- [22] J. L. Lewis, Regularity of the derivatives of solutions to certain degenerate elliptic equations, Indiana Univ. Math. J.32 (1983), 849–858. Zbl0554.35048MR721568
- [23] P. Li & L.-F. Tam, Green’s function, harmonic functions, and volume comparison, J. Differential Geom.41 (1995), 277–318. Zbl0827.53033MR1331970
- [24] P. Li & J. Wang, Complete manifolds with positive spectrum. II, J. Differential Geom. 62 (2002), 143–162. Zbl1073.58023MR1987380
- [25] P. Li & S.-T. Yau, On the parabolic kernel of the Schrödinger operator, Acta Math.156 (1986), 153–201. Zbl0611.58045MR834612
- [26] R. Moser, The inverse mean curvature flow and -harmonic functions, J. Eur. Math. Soc.9 (2007), 77–83. Zbl1116.53040MR2283104
- [27] L. Ni, The entropy formula for linear heat equation, J. Geom. Anal. 14 (2004), 87–100; addenda J. Geom. Anal. 14 (2004), 369–374. Zbl1062.58028MR2030576
- [28] G. Perelman, The entropy formula for the Ricci flow and its geometric applications, preprint arXiv:math.DG/0211159. Zbl1130.53001
- [29] J. L. Vázquez, Smoothing and decay estimates for nonlinear diffusion equations. Equations of porous medium type, Oxford Lecture Series in Mathematics and its Applications 33, Oxford University Press, 2006. Zbl1113.35004MR2282669
- [30] S.-T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math.28 (1975), 201–228. Zbl0291.31002MR431040
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.