Displaying similar documents to “Local gradient estimates of p -harmonic functions, 1 / H -flow, and an entropy formula”

Gradient estimates of Li Yau type for a general heat equation on Riemannian manifolds

Nguyen Ngoc Khanh (2016)

Archivum Mathematicum

Similarity:

In this paper, we consider gradient estimates on complete noncompact Riemannian manifolds ( M , g ) for the following general heat equation u t = Δ V u + a u log u + b u where a is a constant and b is a differentiable function defined on M × [ 0 , ) . We suppose that the Bakry-Émery curvature and the N -dimensional Bakry-Émery curvature are bounded from below, respectively. Then we obtain the gradient estimate of Li-Yau type for the above general heat equation. Our results generalize the work of Huang-Ma ([4]) and Y. Li ([6]), recently. ...

Harmonie reflections

Lieven Vanhecke, Maria-Elena Vazquez-Abal (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

We study local reflections ϕ σ with respect to a curve σ in a Riemannian manifold and prove that σ is a geodesic if ϕ σ is a harmonic map. Moreover, we prove that the Riemannian manifold has constant curvature if and only if ϕ σ is harmonic for all geodesies σ .

Harmonie reflections

Lieven Vanhecke, Maria-Elena Vazquez-Abal (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Similarity:

We study local reflections ϕ σ with respect to a curve σ in a Riemannian manifold and prove that σ is a geodesic if ϕ σ is a harmonic map. Moreover, we prove that the Riemannian manifold has constant curvature if and only if ϕ σ is harmonic for all geodesies σ .

Deformations of Metrics and Biharmonic Maps

Aicha Benkartab, Ahmed Mohammed Cherif (2020)

Communications in Mathematics

Similarity:

We construct biharmonic non-harmonic maps between Riemannian manifolds ( M , g ) and ( N , h ) by first making the ansatz that ϕ : ( M , g ) ( N , h ) be a harmonic map and then deforming the metric on N by h ˜ α = α h + ( 1 - α ) d f d f to render ϕ biharmonic, where f is a smooth function with gradient of constant norm on ( N , h ) and α ( 0 , 1 ) . We construct new examples of biharmonic non-harmonic maps, and we characterize the biharmonicity of some curves on Riemannian manifolds.

The Geometry of Differential Harnack Estimates

Sebastian Helmensdorfer, Peter Topping (2011-2012)

Séminaire de théorie spectrale et géométrie

Similarity:

In this short note, we hope to give a rapid induction for non-experts into the world of Differential Harnack inequalities, which have been so influential in geometric analysis and probability theory over the past few decades. At the coarsest level, these are often mysterious-looking inequalities that hold for ‘positive’ solutions of some parabolic PDE, and can be verified quickly by grinding out a computation and applying a maximum principle. In this note we emphasise the geometry behind...

Mean curvature properties for p -Laplace phase transitions

Berardino Sciunzi, Enrico Valdinoci (2005)

Journal of the European Mathematical Society

Similarity:

This paper deals with phase transitions corresponding to an energy which is the sum of a kinetic part of p -Laplacian type and a double well potential h 0 with suitable growth conditions. We prove that level sets of solutions of Δ p u = h 0 ' ( u ) possessing a certain decay property satisfy a mean curvature equation in a suitable weak viscosity sense. From this, we show that, if the above level sets approach uniformly a hypersurface, the latter has zero mean curvature.

Ricci flow coupled with harmonic map flow

Reto Müller (2012)

Annales scientifiques de l'École Normale Supérieure

Similarity:

We investigate a coupled system of the Ricci flow on a closed manifold M with the harmonic map flow of a map φ from M to some closed target manifold N , t g = - 2 Rc + 2 α φ φ , t φ = τ g φ , where α is a (possibly time-dependent) positive coupling constant. Surprisingly, the coupled system may be less singular than the Ricci flow or the harmonic map flow alone. In particular, we can always rule out energy concentration of  φ a-priori by choosing α large enough. Moreover, it suffices to bound the curvature...

Hypersurfaces with free boundary and large constant mean curvature: concentration along submanifolds

Mouhamed Moustapha Fall, Fethi Mahmoudi (2008)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

Given a domain Ω of m + 1 and a k -dimensional non-degenerate minimal submanifold K of Ω with 1 k m - 1 , we prove the existence of a family of embedded constant mean curvature hypersurfaces in Ω which as their mean curvature tends to infinity concentrate along K and intersecting Ω perpendicularly along their boundaries.

Two-dimensional curvature functionals with superquadratic growth

Ernst Kuwert, Tobias Lamm, Yuxiang Li (2015)

Journal of the European Mathematical Society

Similarity:

For two-dimensional, immersed closed surfaces f : Σ n , we study the curvature functionals p ( f ) and 𝒲 p ( f ) with integrands ( 1 + | A | 2 ) p / 2 and ( 1 + | H | 2 ) p / 2 , respectively. Here A is the second fundamental form, H is the mean curvature and we assume p > 2 . Our main result asserts that W 2 , p critical points are smooth in both cases. We also prove a compactness theorem for 𝒲 p -bounded sequences. In the case of p this is just Langer’s theorem [16], while for 𝒲 p we have to impose a bound for the Willmore energy strictly below 8 π as an additional...

Regularity of stable solutions of p -Laplace equations through geometric Sobolev type inequalities

Daniele Castorina, Manel Sanchón (2015)

Journal of the European Mathematical Society

Similarity:

We prove a Sobolev and a Morrey type inequality involving the mean curvature and the tangential gradient with respect to the level sets of the function that appears in the inequalities. Then, as an application, we establish a priori estimates for semistable solutions of Δ p u = g ( u ) in a smooth bounded domain Ω n . In particular, we obtain new L r and W 1 , r bounds for the extremal solution u when the domain is strictly convex. More precisely, we prove that u L ( Ω ) if n p + 2 and u L n p n - p - 2 ( Ω ) W 0 1 , p ( Ω ) if n > p + 2 .

Structure of second-order symmetric Lorentzian manifolds

Oihane F. Blanco, Miguel Sánchez, José M. Senovilla (2013)

Journal of the European Mathematical Society

Similarity:

𝑆𝑒𝑐𝑜𝑛𝑑 - 𝑜𝑟𝑑𝑒𝑟𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐𝐿𝑜𝑟𝑒𝑛𝑡𝑧𝑖𝑎𝑛𝑠𝑝𝑎𝑐𝑒𝑠 , that is to say, Lorentzian manifolds with vanishing second derivative R 0 of the curvature tensor R , are characterized by several geometric properties, and explicitly presented. Locally, they are a product M = M 1 × M 2 where each factor is uniquely determined as follows: M 2 is a Riemannian symmetric space and M 1 is either a constant-curvature Lorentzian space or a definite type of plane wave generalizing the Cahen–Wallach family. In the proper case (i.e., R 0 at some point), the curvature...

On Kakeya–Nikodym averages, L p -norms and lower bounds for nodal sets of eigenfunctions in higher dimensions

Matthew D. Blair, Christopher D. Sogge (2015)

Journal of the European Mathematical Society

Similarity:

We extend a result of the second author [27, Theorem 1.1] to dimensions d 3 which relates the size of L p -norms of eigenfunctions for 2 < p < 2 ( d + 1 ) / d - 1 to the amount of L 2 -mass in shrinking tubes about unit-length geodesics. The proof uses bilinear oscillatory integral estimates of Lee [22] and a variable coefficient variant of an " ϵ removal lemma" of Tao and Vargas [35]. We also use Hörmander’s [20] L 2 oscillatory integral theorem and the Cartan–Hadamard theorem to show that, under the assumption of nonpositive...

Singer-Thorpe bases for special Einstein curvature tensors in dimension 4

Zdeněk Dušek (2015)

Czechoslovak Mathematical Journal

Similarity:

Let ( M , g ) be a 4-dimensional Einstein Riemannian manifold. At each point p of M , the tangent space admits a so-called Singer-Thorpe basis (ST basis) with respect to the curvature tensor R at p . In this basis, up to standard symmetries and antisymmetries, just 5 components of the curvature tensor R are nonzero. For the space of constant curvature, the group O ( 4 ) acts as a transformation group between ST bases at T p M and for the so-called 2-stein curvature tensors, the group Sp ( 1 ) SO ( 4 ) acts as a transformation...

f -biminimal maps between Riemannian manifolds

Yan Zhao, Ximin Liu (2019)

Czechoslovak Mathematical Journal

Similarity:

We give the definition of f -biminimal submanifolds and derive the equation for f -biminimal submanifolds. As an application, we give some examples of f -biminimal manifolds. Finally, we consider f -minimal hypersurfaces in the product space n × 𝕊 1 ( a ) and derive two rigidity theorems.