# ${\mathcal{C}}^{0}$-rigidity of characteristics in symplectic geometry

Annales scientifiques de l'École Normale Supérieure (2009)

- Volume: 42, Issue: 5, page 857-864
- ISSN: 0012-9593

## Access Full Article

top## Abstract

top## How to cite

topOpshtein, Emmanuel. "$\mathcal {C}^0$-rigidity of characteristics in symplectic geometry." Annales scientifiques de l'École Normale Supérieure 42.5 (2009): 857-864. <http://eudml.org/doc/272241>.

@article{Opshtein2009,

abstract = {The paper concerns a $\mathcal \{C\}^0$-rigidity result for the characteristic foliations in symplectic geometry. A symplectic homeomorphism (in the sense of Eliashberg-Gromov) which preserves a smooth hypersurface also preserves its characteristic foliation.},

author = {Opshtein, Emmanuel},

journal = {Annales scientifiques de l'École Normale Supérieure},

keywords = {symplectic geometry},

language = {eng},

number = {5},

pages = {857-864},

publisher = {Société mathématique de France},

title = {$\mathcal \{C\}^0$-rigidity of characteristics in symplectic geometry},

url = {http://eudml.org/doc/272241},

volume = {42},

year = {2009},

}

TY - JOUR

AU - Opshtein, Emmanuel

TI - $\mathcal {C}^0$-rigidity of characteristics in symplectic geometry

JO - Annales scientifiques de l'École Normale Supérieure

PY - 2009

PB - Société mathématique de France

VL - 42

IS - 5

SP - 857

EP - 864

AB - The paper concerns a $\mathcal {C}^0$-rigidity result for the characteristic foliations in symplectic geometry. A symplectic homeomorphism (in the sense of Eliashberg-Gromov) which preserves a smooth hypersurface also preserves its characteristic foliation.

LA - eng

KW - symplectic geometry

UR - http://eudml.org/doc/272241

ER -

## References

top- [1] D. Burns & R. Hind, Symplectic rigidity for Anosov hypersurfaces, Ergodic Theory Dynam. Systems26 (2006), 1399–1416. Zbl1109.37025
- [2] K. Cieliebak, Symplectic boundaries: creating and destroying closed characteristics, Geom. Funct. Anal.7 (1997), 269–321. Zbl0876.53017
- [3] Y. M. Eliashberg, A theorem on the structure of wave fronts and its application in symplectic topology, Funktsional. Anal. i Prilozhen.21 (1987), 65–72. Zbl0655.58015
- [4] Y. M. Eliashberg & M. Gromov, Convex symplectic manifolds, in Several complex variables and complex geometry, Part 2 (Santa Cruz, CA, 1989), Proc. Sympos. Pure Math. 52, Amer. Math. Soc., 1991, 135–162. Zbl0742.53010
- [5] Y. M. Eliashberg & H. Hofer, Towards the definition of symplectic boundary, Geom. Funct. Anal.2 (1992), 211–220. Zbl0756.53016MR1159830
- [6] Y. M. Eliashberg & H. Hofer, Unseen symplectic boundaries, in Manifolds and geometry (Pisa, 1993), Sympos. Math., XXXVI, Cambridge Univ. Press, 1996, 178–189. Zbl0870.53020MR1410072
- [7] D. B. A. Epstein, Periodic flows on three-manifolds, Ann. of Math.95 (1972), 66–82. Zbl0231.58009MR288785
- [8] M. Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math.82 (1985), 307–347. Zbl0592.53025MR809718
- [9] H. Hofer & E. Zehnder, Symplectic invariants and Hamiltonian dynamics, Birkhäuser Advanced Texts: Basler Lehrbücher, 1994. Zbl0805.58003MR1306732
- [10] F. Lalonde & D. McDuff, Local non-squeezing theorems and stability, Geom. Funct. Anal.5 (1995), 364–386. Zbl0837.58014MR1334871
- [11] F. Laudenbach & J.-C. Sikorav, Hamiltonian disjunction and limits of Lagrangian submanifolds, Int. Math. Res. Not. 1994 (1994). Zbl0812.53031MR1266111
- [12] D. McDuff & D. Salamon, Introduction to symplectic topology, second éd., Oxford Mathematical Monographs, Oxford Univ. Press, 1998. Zbl0844.58029MR1698616
- [13] E. Opshtein, Maximal symplectic packings in ${\mathbb{P}}^{2}$, Compos. Math.143 (2007), 1558–1575. Zbl1133.53057MR2371382
- [14] G. Paternain, L. Polterovich & K. Siburg, Boundary rigidity for Lagrangian submanifolds, non-removable intersections, and Aubry-Mather theory, Mosc. Math. J. 3 (2003), 593–619, 745. Zbl1048.53058MR2025275
- [15] D. Sullivan, Cycles for the dynamical study of foliated manifolds and complex manifolds, Invent. Math.36 (1976), 225–255. Zbl0335.57015MR433464

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.