𝒞 0 -rigidity of characteristics in symplectic geometry

Emmanuel Opshtein

Annales scientifiques de l'École Normale Supérieure (2009)

  • Volume: 42, Issue: 5, page 857-864
  • ISSN: 0012-9593

Abstract

top
The paper concerns a 𝒞 0 -rigidity result for the characteristic foliations in symplectic geometry. A symplectic homeomorphism (in the sense of Eliashberg-Gromov) which preserves a smooth hypersurface also preserves its characteristic foliation.

How to cite

top

Opshtein, Emmanuel. "$\mathcal {C}^0$-rigidity of characteristics in symplectic geometry." Annales scientifiques de l'École Normale Supérieure 42.5 (2009): 857-864. <http://eudml.org/doc/272241>.

@article{Opshtein2009,
abstract = {The paper concerns a $\mathcal \{C\}^0$-rigidity result for the characteristic foliations in symplectic geometry. A symplectic homeomorphism (in the sense of Eliashberg-Gromov) which preserves a smooth hypersurface also preserves its characteristic foliation.},
author = {Opshtein, Emmanuel},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {symplectic geometry},
language = {eng},
number = {5},
pages = {857-864},
publisher = {Société mathématique de France},
title = {$\mathcal \{C\}^0$-rigidity of characteristics in symplectic geometry},
url = {http://eudml.org/doc/272241},
volume = {42},
year = {2009},
}

TY - JOUR
AU - Opshtein, Emmanuel
TI - $\mathcal {C}^0$-rigidity of characteristics in symplectic geometry
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2009
PB - Société mathématique de France
VL - 42
IS - 5
SP - 857
EP - 864
AB - The paper concerns a $\mathcal {C}^0$-rigidity result for the characteristic foliations in symplectic geometry. A symplectic homeomorphism (in the sense of Eliashberg-Gromov) which preserves a smooth hypersurface also preserves its characteristic foliation.
LA - eng
KW - symplectic geometry
UR - http://eudml.org/doc/272241
ER -

References

top
  1. [1] D. Burns & R. Hind, Symplectic rigidity for Anosov hypersurfaces, Ergodic Theory Dynam. Systems26 (2006), 1399–1416. Zbl1109.37025
  2. [2] K. Cieliebak, Symplectic boundaries: creating and destroying closed characteristics, Geom. Funct. Anal.7 (1997), 269–321. Zbl0876.53017
  3. [3] Y. M. Eliashberg, A theorem on the structure of wave fronts and its application in symplectic topology, Funktsional. Anal. i Prilozhen.21 (1987), 65–72. Zbl0655.58015
  4. [4] Y. M. Eliashberg & M. Gromov, Convex symplectic manifolds, in Several complex variables and complex geometry, Part 2 (Santa Cruz, CA, 1989), Proc. Sympos. Pure Math. 52, Amer. Math. Soc., 1991, 135–162. Zbl0742.53010
  5. [5] Y. M. Eliashberg & H. Hofer, Towards the definition of symplectic boundary, Geom. Funct. Anal.2 (1992), 211–220. Zbl0756.53016MR1159830
  6. [6] Y. M. Eliashberg & H. Hofer, Unseen symplectic boundaries, in Manifolds and geometry (Pisa, 1993), Sympos. Math., XXXVI, Cambridge Univ. Press, 1996, 178–189. Zbl0870.53020MR1410072
  7. [7] D. B. A. Epstein, Periodic flows on three-manifolds, Ann. of Math.95 (1972), 66–82. Zbl0231.58009MR288785
  8. [8] M. Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math.82 (1985), 307–347. Zbl0592.53025MR809718
  9. [9] H. Hofer & E. Zehnder, Symplectic invariants and Hamiltonian dynamics, Birkhäuser Advanced Texts: Basler Lehrbücher, 1994. Zbl0805.58003MR1306732
  10. [10] F. Lalonde & D. McDuff, Local non-squeezing theorems and stability, Geom. Funct. Anal.5 (1995), 364–386. Zbl0837.58014MR1334871
  11. [11] F. Laudenbach & J.-C. Sikorav, Hamiltonian disjunction and limits of Lagrangian submanifolds, Int. Math. Res. Not. 1994 (1994). Zbl0812.53031MR1266111
  12. [12] D. McDuff & D. Salamon, Introduction to symplectic topology, second éd., Oxford Mathematical Monographs, Oxford Univ. Press, 1998. Zbl0844.58029MR1698616
  13. [13] E. Opshtein, Maximal symplectic packings in 2 , Compos. Math.143 (2007), 1558–1575. Zbl1133.53057MR2371382
  14. [14] G. Paternain, L. Polterovich & K. Siburg, Boundary rigidity for Lagrangian submanifolds, non-removable intersections, and Aubry-Mather theory, Mosc. Math. J. 3 (2003), 593–619, 745. Zbl1048.53058MR2025275
  15. [15] D. Sullivan, Cycles for the dynamical study of foliated manifolds and complex manifolds, Invent. Math.36 (1976), 225–255. Zbl0335.57015MR433464

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.