The generalized Hodge and Bloch conjectures are equivalent for general complete intersections
Annales scientifiques de l'École Normale Supérieure (2013)
- Volume: 46, Issue: 3, page 449-475
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topVoisin, Claire. "The generalized Hodge and Bloch conjectures are equivalent for general complete intersections." Annales scientifiques de l'École Normale Supérieure 46.3 (2013): 449-475. <http://eudml.org/doc/272244>.
@article{Voisin2013,
abstract = {We prove that Bloch’s conjecture is true for surfaces with $p_g=0$ obtained as $0$-sets $X_\sigma $ of a section $\sigma $ of a very ample vector bundle on a variety $X$ with “trivial” Chow groups. We get a similar result in presence of a finite group action, showing that if a projector of the group acts as $0$ on holomorphic $2$-forms of $X_\sigma $, then it acts as $0$ on $0$-cycles of degree $0$ of $X_\sigma $. In higher dimension, we also prove a similar but conditional result showing that the generalized Hodge conjecture for general $X_\sigma $ implies the generalized Bloch conjecture for any smooth $X_\sigma $, assuming the Lefschetz standard conjecture (the last hypothesis is not needed in dimension $3$).},
author = {Voisin, Claire},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {algebraic cycles; Bloch conjecture; generalized Hodge conjecture},
language = {eng},
number = {3},
pages = {449-475},
publisher = {Société mathématique de France},
title = {The generalized Hodge and Bloch conjectures are equivalent for general complete intersections},
url = {http://eudml.org/doc/272244},
volume = {46},
year = {2013},
}
TY - JOUR
AU - Voisin, Claire
TI - The generalized Hodge and Bloch conjectures are equivalent for general complete intersections
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2013
PB - Société mathématique de France
VL - 46
IS - 3
SP - 449
EP - 475
AB - We prove that Bloch’s conjecture is true for surfaces with $p_g=0$ obtained as $0$-sets $X_\sigma $ of a section $\sigma $ of a very ample vector bundle on a variety $X$ with “trivial” Chow groups. We get a similar result in presence of a finite group action, showing that if a projector of the group acts as $0$ on holomorphic $2$-forms of $X_\sigma $, then it acts as $0$ on $0$-cycles of degree $0$ of $X_\sigma $. In higher dimension, we also prove a similar but conditional result showing that the generalized Hodge conjecture for general $X_\sigma $ implies the generalized Bloch conjecture for any smooth $X_\sigma $, assuming the Lefschetz standard conjecture (the last hypothesis is not needed in dimension $3$).
LA - eng
KW - algebraic cycles; Bloch conjecture; generalized Hodge conjecture
UR - http://eudml.org/doc/272244
ER -
References
top- [1] A. Albano & A. Collino, On the Griffiths group of the cubic sevenfold, Math. Ann.299 (1994), 715–726. Zbl0803.14022MR1286893
- [2] S. Bloch, Lectures on algebraic cycles, second éd., New Mathematical Monographs 16, Cambridge Univ. Press, 2010. Zbl1201.14006MR2723320
- [3] S. Bloch & V. Srinivas, Remarks on correspondences and algebraic cycles, Amer. J. Math.105 (1983), 1235–1253. Zbl0525.14003MR714776
- [4] F. Charles, Remarks on the Lefschetz standard conjecture and hyperkähler varieties, preprint 2010, to appear in Comm. Math. Helv. MR3048193
- [5] J.-L. Colliot-Thélène & C. Voisin, Cohomologie non ramifiée et conjecture de Hodge entière, Duke Math. J.161 (2012), 735–801. Zbl1244.14010MR2904092
- [6] P. Deligne, Théorème de Lefschetz et critères de dégénérescence de suites spectrales, Publ. Math. I.H.É.S. 35 (1968), 259–278. Zbl0159.22501MR244265
- [7] H. Esnault, M. Levine & E. Viehweg, Chow groups of projective varieties of very small degree, Duke Math. J.87 (1997), 29–58. Zbl0916.14001MR1440062
- [8] W. Fulton & R. MacPherson, A compactification of configuration spaces, Ann. of Math.139 (1994), 183–225. Zbl0820.14037MR1259368
- [9] M. Green & P. Griffiths, Hodge-theoretic invariants for algebraic cycles, Int. Math. Res. Not.2003 (2003), 477–510. Zbl1049.14002MR1951543
- [10] A. Grothendieck, Hodge’s general conjecture is false for trivial reasons, Topology8 (1969), 299–303. Zbl0177.49002MR252404
- [11] M. Haiman, Hilbert schemes, polygraphs and the Macdonald positivity conjecture, J. Amer. Math. Soc.14 (2001), 941–1006. Zbl1009.14001MR1839919
- [12] S.-I. Kimura, Chow groups are finite dimensional, in some sense, Math. Ann. 331 (2005), 173–201. Zbl1067.14006MR2107443
- [13] S. L. Kleiman, Algebraic cycles and the Weil conjectures, in Dix exposés sur la cohomologie des schémas, North-Holland, 1968, 359–386. Zbl0198.25902MR292838
- [14] R. Laterveer, Algebraic varieties with small Chow groups, J. Math. Kyoto Univ.38 (1998), 673–694. Zbl0961.14003MR1669995
- [15] M. Lehn & C. Sorger, Letter to the author, June 24th, 2011.
- [16] J. D. Lewis, A generalization of Mumford’s theorem. II, Illinois J. Math. 39 (1995), 288–304. Zbl0823.14002MR1316539
- [17] D. Mumford, Rational equivalence of -cycles on surfaces, J. Math. Kyoto Univ.9 (1968), 195–204. Zbl0184.46603MR249428
- [18] J. P. Murre, On the motive of an algebraic surface, J. reine angew. Math. 409 (1990), 190–204. Zbl0698.14032MR1061525
- [19] M. V. Nori, Algebraic cycles and Hodge-theoretic connectivity, Invent. Math.111 (1993), 349–373. Zbl0822.14008MR1198814
- [20] A. Otwinowska, Remarques sur les cycles de petite dimension de certaines intersections complètes, C. R. Acad. Sci. Paris Sér. I Math.329 (1999), 141–146. Zbl0961.14004MR1710511
- [21] A. Otwinowska, Remarques sur les groupes de Chow des hypersurfaces de petit degré, C. R. Acad. Sci. Paris Sér. I Math.329 (1999), 51–56. MR1703267
- [22] K. H. Paranjape, Cohomological and cycle-theoretic connectivity, Ann. of Math.139 (1994), 641–660. Zbl0828.14003MR1283872
- [23] C. Peters, Bloch-type conjectures and an example of a three-fold of general type, Commun. Contemp. Math.12 (2010), 587–605. Zbl1200.14015MR2678942
- [24] A. A. Rojtman, The torsion of the group of -cycles modulo rational equivalence, Ann. of Math.111 (1980), 553–569. Zbl0504.14006MR577137
- [25] S. Saito, Motives and filtrations on Chow groups, Invent. Math.125 (1996), 149–196. Zbl0897.14001MR1389964
- [26] C. Schoen, On Hodge structures and nonrepresentability of Chow groups, Compositio Math.88 (1993), 285–316. Zbl0802.14004MR1241952
- [27] A. J. Sommese, Submanifolds of Abelian varieties, Math. Ann.233 (1978), 229–256. MR466647
- [28] T. Terasoma, Infinitesimal variation of Hodge structures and the weak global Torelli theorem for complete intersections, Ann. of Math.132 (1990), 213–235. Zbl0732.14005MR1070597
- [29] C. Voisin, Sur les zéro-cycles de certaines hypersurfaces munies d’un automorphisme, Ann. Scuola Norm. Sup. Pisa Cl. Sci.19 (1992), 473–492. MR1205880
- [30] C. Voisin, Remarks on zero-cycles of self-products of varieties, in Moduli of vector bundles (Sanda, 1994; Kyoto, 1994), Lecture Notes in Pure and Appl. Math. 179, Dekker, 1996, 265–285. MR1397993
- [31] C. Voisin, Sur les groupes de Chow de certaines hypersurfaces, C. R. Acad. Sci. Paris Sér. I Math.322 (1996), 73–76. MR1390824
- [32] C. Voisin, Hodge theory and complex algebraic geometry. I and II, Cambridge Studies in Advanced Math. 76 and 77, Cambridge Univ. Press, 2002, 2003. MR1967689
- [33] C. Voisin, Coniveau 2 complete intersections and effective cones, Geom. Funct. Anal.19 (2010), 1494–1513. Zbl1205.14009MR2585582
- [34] C. Voisin, Lectures on the Hodge and Grothendieck-Hodge conjectures, Rend. Semin. Mat. Univ. Politec. Torino69 (2011), 149–198. MR2931228
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.