Non-orbit equivalent actions of
Annales scientifiques de l'École Normale Supérieure (2009)
- Volume: 42, Issue: 4, page 675-696
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topIoana, Adrian. "Non-orbit equivalent actions of $\mathbb {F}_n$." Annales scientifiques de l'École Normale Supérieure 42.4 (2009): 675-696. <http://eudml.org/doc/272249>.
@article{Ioana2009,
abstract = {For any $2\le n\le \infty $, we construct a concrete 1-parameter family of non-orbit equivalent actions of the free group $\mathbb \{F\}_n$. These actions arise as diagonal products between a generalized Bernoulli action and the action $\mathbb \{F\}_n\curvearrowright (\mathbb \{T\}^2,\lambda ^2)$, where $\mathbb \{F\}_n$ is seen as a subgroup of $\mathrm \{SL\}_2(\mathbb \{Z\})$.},
author = {Ioana, Adrian},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {free groups; orbit equivalence},
language = {eng},
number = {4},
pages = {675-696},
publisher = {Société mathématique de France},
title = {Non-orbit equivalent actions of $\mathbb \{F\}_n$},
url = {http://eudml.org/doc/272249},
volume = {42},
year = {2009},
}
TY - JOUR
AU - Ioana, Adrian
TI - Non-orbit equivalent actions of $\mathbb {F}_n$
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2009
PB - Société mathématique de France
VL - 42
IS - 4
SP - 675
EP - 696
AB - For any $2\le n\le \infty $, we construct a concrete 1-parameter family of non-orbit equivalent actions of the free group $\mathbb {F}_n$. These actions arise as diagonal products between a generalized Bernoulli action and the action $\mathbb {F}_n\curvearrowright (\mathbb {T}^2,\lambda ^2)$, where $\mathbb {F}_n$ is seen as a subgroup of $\mathrm {SL}_2(\mathbb {Z})$.
LA - eng
KW - free groups; orbit equivalence
UR - http://eudml.org/doc/272249
ER -
References
top- [1] S. I. Bezuglyĭ & V. Y. Golodets, Hyperfinite and actions for nonamenable groups, J. Funct. Anal.40 (1981), 30–44. Zbl0496.22011MR607589
- [2] M. Burger, Kazhdan constants for , J. reine angew. Math. 413 (1991), 36–67. Zbl0704.22009MR1089795
- [3] A. Connes, J. Feldman & B. Weiss, An amenable equivalence relation is generated by a single transformation, Ergodic Theory Dynam. Systems1 (1981), 431–450. Zbl0491.28018MR662736
- [4] A. Connes & B. Weiss, Property and asymptotically invariant sequences, Israel J. Math.37 (1980), 209–210. Zbl0479.28017MR599455
- [5] H. A. Dye, On groups of measure preserving transformation. I, Amer. J. Math. 81 (1959), 119–159. Zbl0087.11501MR131516
- [6] I. Epstein, Orbit inequivalent actions of non-amenable groups, preprint arXiv:0707.4215, 2007.
- [7] J. Feldman & C. C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras. II, Trans. Amer. Math. Soc. 234 (1977), 325–359. Zbl0369.22010MR578730
- [8] D. Gaboriau, On orbit equivalence of measure preserving actions, in Rigidity in dynamics and geometry (Cambridge, 2000), Springer, 2002, 167–186. Zbl1036.22008MR1919400
- [9] D. Gaboriau, Relative property () actions and trivial outer automorphism groups, preprint arXiv:0804.0358, 2008. Zbl1211.46071
- [10] D. Gaboriau & R. Lyons, A measurable-group-theoretic solution to von Neumann’s problem, Invent. Math.177 (2009), 533–540. Zbl1182.43002MR2534099
- [11] D. Gaboriau & S. Popa, An uncountable family of nonorbit equivalent actions of , J. Amer. Math. Soc.18 (2005), 547–559. Zbl1155.37302MR2138136
- [12] S. L. Gefter & V. Y. Golodets, Fundamental groups for ergodic actions and actions with unit fundamental groups, Publ. Res. Inst. Math. Sci.24 (1988), 821–847. Zbl0684.22003MR1000122
- [13] G. Hjorth, A converse to Dye’s theorem, Trans. Amer. Math. Soc.357 (2005), 3083–3103. Zbl1068.03035MR2135736
- [14] A. Ioana, Orbit inequivalent actions for groups containing a copy of , preprint arXiv:math/0701027, 2007. Zbl1230.37010MR2810796
- [15] A. Ioana, A relative version of Connes’ invariant and existence of orbit inequivalent actions, Ergodic Theory Dynam. Systems27 (2007), 1199–1213. Zbl1121.37006MR2342972
- [16] A. Ioana, Rigidity results for wreath product factors, J. Funct. Anal.252 (2007), 763–791. Zbl1134.46041MR2360936
- [17] A. Ioana, J. Peterson & S. Popa, Amalgamated free products of weakly rigid factors and calculation of their symmetry groups, Acta Math.200 (2008), 85–153. Zbl1149.46047MR2386109
- [18] V. F. R. Jones & K. Schmidt, Asymptotically invariant sequences and approximate finiteness, Amer. J. Math.109 (1987), 91–114. Zbl0638.28014MR878200
- [19] Y. Kida, Classification of certain generalized Bernoulli actions of mapping class groups, preprint http://www.math.kyoto-u.ac.jp/~kida/papers/ber.pdf, 2008.
- [20] N. Monod & Y. Shalom, Orbit equivalence rigidity and bounded cohomology, Ann. of Math.164 (2006), 825–878. Zbl1129.37003MR2259246
- [21] F. J. Murray & J. Von Neumann, On rings of operators, Ann. of Math.37 (1936), 116–229. Zbl0014.16101MR1503275
- [22] D. S. Ornstein & B. Weiss, Ergodic theory of amenable group actions. I. The Rohlin lemma, Bull. Amer. Math. Soc. (N.S.) 2 (1980), 161–164. Zbl0427.28018MR551753
- [23] D. S. Ornstein & B. Weiss, Entropy and isomorphism theorems for actions of amenable groups, J. Analyse Math.48 (1987), 1–141. Zbl0637.28015MR910005
- [24] K. Petersen, Ergodic theory, Cambridge Studies in Advanced Math. 2, Cambridge Univ. Press, 1983. Zbl0507.28010MR833286
- [25] S. Popa, On a class of type factors with Betti numbers invariants, Ann. of Math.163 (2006), 809–899. Zbl1120.46045MR2215135
- [26] S. Popa, Some computations of 1-cohomology groups and construction of non-orbit-equivalent actions, J. Inst. Math. Jussieu5 (2006), 309–332. Zbl1092.37003MR2225044
- [27] S. Popa, Strong rigidity of factors arising from malleable actions of -rigid groups. I, Invent. Math. 165 (2006), 369–408. Zbl1120.46043MR2231961
- [28] S. Popa, Cocycle and orbit equivalence superrigidity for malleable actions of -rigid groups, Invent. Math.170 (2007), 243–295. Zbl1131.46040MR2342637
- [29] S. Popa, Deformation and rigidity for group actions and von Neumann algebras, in International Congress of Mathematicians. Vol. I, Eur. Math. Soc., Zürich, 2007, 445–477. Zbl1132.46038MR2334200
- [30] S. Popa, On the superrigidity of malleable actions with spectral gap, J. Amer. Math. Soc.21 (2008), 981–1000. Zbl1222.46048MR2425177
- [31] S. Popa & S. Vaes, Actions of whose II factors and orbit equivalence relations have prescribed fundamental group, preprint arXiv:0803.3351, 2008, to appear in J. Amer. Math. Soc. Zbl1202.46069MR2601038
- [32] K. Schmidt, Amenability, Kazhdan’s property , strong ergodicity and invariant means for ergodic group-actions, Ergodic Theory Dynam. Systems 1 (1981), 223–236. Zbl0485.28019MR661821
- [33] Y. Shalom, Measurable group theory, in European Congress of Mathematics, Eur. Math. Soc., Zürich, 2005, 391–423. Zbl1137.37301MR2185757
- [34] R. J. Zimmer, Ergodic theory and semisimple groups, Monographs in Math. 81, Birkhäuser, 1984. Zbl0571.58015MR776417
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.