Holomorphic line bundles and divisors on a domain of a Stein manifold

Makoto Abe

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2007)

  • Volume: 6, Issue: 2, page 323-330
  • ISSN: 0391-173X

Abstract

top
Let D be an open set of a Stein manifold X of dimension n such that H k ( D , 𝒪 ) = 0 for 2 k n - 1 . We prove that D is Stein if and only if every topologically trivial holomorphic line bundle L on D is associated to some Cartier divisor 𝔡 on D .

How to cite

top

Abe, Makoto. "Holomorphic line bundles and divisors on a domain of a Stein manifold." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 6.2 (2007): 323-330. <http://eudml.org/doc/272258>.

@article{Abe2007,
abstract = {Let $D$ be an open set of a Stein manifold $X$ of dimension $n$ such that $H^\{k\}(D, \mathcal \{O\}) = 0$ for $2 \le k \le n - 1$. We prove that $D$ is Stein if and only if every topologically trivial holomorphic line bundle $L$ on $D$ is associated to some Cartier divisor $\mathfrak \{d\}$ on $D$.},
author = {Abe, Makoto},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {2},
pages = {323-330},
publisher = {Scuola Normale Superiore, Pisa},
title = {Holomorphic line bundles and divisors on a domain of a Stein manifold},
url = {http://eudml.org/doc/272258},
volume = {6},
year = {2007},
}

TY - JOUR
AU - Abe, Makoto
TI - Holomorphic line bundles and divisors on a domain of a Stein manifold
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2007
PB - Scuola Normale Superiore, Pisa
VL - 6
IS - 2
SP - 323
EP - 330
AB - Let $D$ be an open set of a Stein manifold $X$ of dimension $n$ such that $H^{k}(D, \mathcal {O}) = 0$ for $2 \le k \le n - 1$. We prove that $D$ is Stein if and only if every topologically trivial holomorphic line bundle $L$ on $D$ is associated to some Cartier divisor $\mathfrak {d}$ on $D$.
LA - eng
UR - http://eudml.org/doc/272258
ER -

References

top
  1. [1] M. Abe, Holomorphic line bundles on a domain of a two-dimensional Stein manifold, Ann. Polon. Math.83 (2004), 269–272. Zbl1103.32010MR2111713
  2. [2] A. Andreotti and H. Grauert, Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France90 (1962), 193–259. Zbl0106.05501MR150342
  3. [3] E. Ballico, Finitezza e annullamento di gruppi di coomologia su uno spazio complesso, Boll. Un. Mat. Ital. B (6) 1 (1982), 131–142. Zbl0488.32007MR654927
  4. [4] E. Ballico, Cousin I condition and Stein spaces, Complex Var. Theory Appl.50 (2005), 23–25. Zbl1070.32008MR2114350
  5. [5] F. Docquier and H. Grauert, Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten, Math. Ann.140 (1960), 94–123. Zbl0095.28004MR148939
  6. [6] H. Grauert and R. Remmert, “Analytische Stellenalgebren”, Grundl. Math. Wiss., Vol. 176, Springer, Heidelberg, 1971. Zbl0231.32001MR316742
  7. [7] H. Grauert and R. Remmert, “Theory of Stein Spaces”, Grundl. Math. Wiss., Vol. 236, Springer, Berlin-Heidelberg-New York, 1979, Translated by A. Huckleberry. Zbl0433.32007MR580152
  8. [8] H. Grauert and R. Remmert, “Coherent Analytic Sheaves”, Grundl. Math. Wiss., Vol. 265, Springer, Berlin-Heidelberg-New York-Tokyo, 1984. Zbl0537.32001MR755331
  9. [9] R. C. Gunning, “Introduction to Holomorphic Functions of Several Variables”, Vol. 3, Wadsworth, Belmont, 1990. Zbl0699.32001
  10. [10] J. Kajiwara and H. Kazama, Two dimensional complex manifold with vanishing cohomology set, Math. Ann.204 (1973), 1–12. Zbl0259.32005MR367284
  11. [11] H. B. Laufer, On sheaf cohomology and envelopes of holomorphy, Ann. of Math.84 (1966), 102–118. Zbl0143.30201MR209520
  12. [12] M. Raimondo and A. Silva, The cohomology of an open subspace of a Stein space, J. Reine Angew. Math.318 (1980), 32–35. Zbl0424.32008MR579381
  13. [13] H.-J. Reiffen, Riemannsche Hebbarkeitssätze für Cohomologieklassen mit kompaktem Träger, Math. Ann.164 (1966), 272–279. Zbl0142.41102MR197779
  14. [14] J.-P. Serre, Quelques problèmes globaux relatifs aux variétés de Stein, In: “Colloque sur les fonctions de plusieurs variables tenu à Bruxelles du 11 au 14 Mars 1953”, Centre belge de Recherches mathématiques, Librairie universitaire, Louvain, 1954, 57–68. Zbl0053.05302MR64155
  15. [15] J.-P. Serre, “Algèbre Locale. Multiplicités”, 3rd ed., Lecture Notes in Math., Vol. 11, Springer, Berlin-Heidelberg-New York, 1975. Zbl0296.13018
  16. [16] Y.-T. Siu, Non-countable dimensions of cohomology groups of analytic sheaves and domains of holomorphy, Math. Z.102 (1967), 17–29. Zbl0167.06802MR222342
  17. [17] Y.-T. Siu, Analytic sheaf cohomology groups of dimension n of n -dimensional complex spaces, Trans. Amer. Math. Soc.143 (1969), 77–94. Zbl0186.40404MR252684

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.