Holomorphic line bundles and divisors on a domain of a Stein manifold
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2007)
- Volume: 6, Issue: 2, page 323-330
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topAbe, Makoto. "Holomorphic line bundles and divisors on a domain of a Stein manifold." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 6.2 (2007): 323-330. <http://eudml.org/doc/272258>.
@article{Abe2007,
abstract = {Let $D$ be an open set of a Stein manifold $X$ of dimension $n$ such that $H^\{k\}(D, \mathcal \{O\}) = 0$ for $2 \le k \le n - 1$. We prove that $D$ is Stein if and only if every topologically trivial holomorphic line bundle $L$ on $D$ is associated to some Cartier divisor $\mathfrak \{d\}$ on $D$.},
author = {Abe, Makoto},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {2},
pages = {323-330},
publisher = {Scuola Normale Superiore, Pisa},
title = {Holomorphic line bundles and divisors on a domain of a Stein manifold},
url = {http://eudml.org/doc/272258},
volume = {6},
year = {2007},
}
TY - JOUR
AU - Abe, Makoto
TI - Holomorphic line bundles and divisors on a domain of a Stein manifold
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2007
PB - Scuola Normale Superiore, Pisa
VL - 6
IS - 2
SP - 323
EP - 330
AB - Let $D$ be an open set of a Stein manifold $X$ of dimension $n$ such that $H^{k}(D, \mathcal {O}) = 0$ for $2 \le k \le n - 1$. We prove that $D$ is Stein if and only if every topologically trivial holomorphic line bundle $L$ on $D$ is associated to some Cartier divisor $\mathfrak {d}$ on $D$.
LA - eng
UR - http://eudml.org/doc/272258
ER -
References
top- [1] M. Abe, Holomorphic line bundles on a domain of a two-dimensional Stein manifold, Ann. Polon. Math.83 (2004), 269–272. Zbl1103.32010MR2111713
- [2] A. Andreotti and H. Grauert, Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France90 (1962), 193–259. Zbl0106.05501MR150342
- [3] E. Ballico, Finitezza e annullamento di gruppi di coomologia su uno spazio complesso, Boll. Un. Mat. Ital. B (6) 1 (1982), 131–142. Zbl0488.32007MR654927
- [4] E. Ballico, Cousin I condition and Stein spaces, Complex Var. Theory Appl.50 (2005), 23–25. Zbl1070.32008MR2114350
- [5] F. Docquier and H. Grauert, Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten, Math. Ann.140 (1960), 94–123. Zbl0095.28004MR148939
- [6] H. Grauert and R. Remmert, “Analytische Stellenalgebren”, Grundl. Math. Wiss., Vol. 176, Springer, Heidelberg, 1971. Zbl0231.32001MR316742
- [7] H. Grauert and R. Remmert, “Theory of Stein Spaces”, Grundl. Math. Wiss., Vol. 236, Springer, Berlin-Heidelberg-New York, 1979, Translated by A. Huckleberry. Zbl0433.32007MR580152
- [8] H. Grauert and R. Remmert, “Coherent Analytic Sheaves”, Grundl. Math. Wiss., Vol. 265, Springer, Berlin-Heidelberg-New York-Tokyo, 1984. Zbl0537.32001MR755331
- [9] R. C. Gunning, “Introduction to Holomorphic Functions of Several Variables”, Vol. 3, Wadsworth, Belmont, 1990. Zbl0699.32001
- [10] J. Kajiwara and H. Kazama, Two dimensional complex manifold with vanishing cohomology set, Math. Ann.204 (1973), 1–12. Zbl0259.32005MR367284
- [11] H. B. Laufer, On sheaf cohomology and envelopes of holomorphy, Ann. of Math.84 (1966), 102–118. Zbl0143.30201MR209520
- [12] M. Raimondo and A. Silva, The cohomology of an open subspace of a Stein space, J. Reine Angew. Math.318 (1980), 32–35. Zbl0424.32008MR579381
- [13] H.-J. Reiffen, Riemannsche Hebbarkeitssätze für Cohomologieklassen mit kompaktem Träger, Math. Ann.164 (1966), 272–279. Zbl0142.41102MR197779
- [14] J.-P. Serre, Quelques problèmes globaux relatifs aux variétés de Stein, In: “Colloque sur les fonctions de plusieurs variables tenu à Bruxelles du 11 au 14 Mars 1953”, Centre belge de Recherches mathématiques, Librairie universitaire, Louvain, 1954, 57–68. Zbl0053.05302MR64155
- [15] J.-P. Serre, “Algèbre Locale. Multiplicités”, 3rd ed., Lecture Notes in Math., Vol. 11, Springer, Berlin-Heidelberg-New York, 1975. Zbl0296.13018
- [16] Y.-T. Siu, Non-countable dimensions of cohomology groups of analytic sheaves and domains of holomorphy, Math. Z.102 (1967), 17–29. Zbl0167.06802MR222342
- [17] Y.-T. Siu, Analytic sheaf cohomology groups of dimension of -dimensional complex spaces, Trans. Amer. Math. Soc.143 (1969), 77–94. Zbl0186.40404MR252684
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.