The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Holomorphic bundles, with fiber , defined on open sets in by locally constant transition automorphisms, are shown to extend to holomorphic bundles on the Riemann sphere. In particular, it allows us to give an example of a non-Stein holomorphic bundle on the unit disc, with polynomial transition automorphisms.
Let be an open set of a Stein manifold of dimension such that for . We prove that is Stein if and only if every topologically trivial holomorphic line bundle on is associated to some Cartier divisor on .
In this paper we develop fundamental tools and methods to study meromorphic functions in an equivariant setup. As our main result we construct quotients of Rosenlicht-type for Stein spaces acted upon holomorphically by complex-reductive Lie groups and their algebraic subgroups. In particular, we show that in this setup invariant meromorphic functions separate orbits in general position. Applications to almost homogeneous spaces and principal orbit types are given. Furthermore, we use the main result...
We show that if X, Y are smooth, compact k-dimensional submanifolds of ℝⁿ and 2k+2 ≤ n, then each diffeomorphism ϕ: X → Y can be extended to a diffeomorphism Φ: ℝⁿ → ℝⁿ which is tame (to be defined in this paper). Moreover, if X, Y are real analytic manifolds and the mapping ϕ is analytic, then we can choose Φ to be also analytic.
We extend this result to some interesting categories of closed (not necessarily compact) subsets of ℝⁿ, namely, to the category of Nash submanifolds...
Oka theory has its roots in the classical Oka-Grauert principle whose main result is Grauert’s classification of principal holomorphic fiber bundles over Stein spaces. Modern Oka theory concerns holomorphic maps from Stein manifolds and Stein spaces to Oka manifolds. It has emerged as a subfield of complex geometry in its own right since the appearance of a seminal paper of M. Gromov in 1989.In this expository paper we discuss Oka manifolds and Oka maps. We describe equivalent characterizations...
We construct closed complex submanifolds of which are differential but not
holomorphic complete intersections. We also prove a homotopy principle concerning the
removal of intersections with certain complex subvarieties of .
We find regular Stein neighborhoods of a union of totally real planes M = (A+iI)ℝ² and N = ℝ² in ℂ², provided that the entries of a real 2 × 2 matrix A are sufficiently small. A key step in our proof is a local construction of a suitable function ρ near the origin. The sublevel sets of ρ are strongly Levi pseudoconvex and admit strong deformation retraction to M ∪ N.
We show the variation formula for the Schiffer span s(t) for moving Riemann surfaces R(t) with , and apply it to show the simultaneous uniformization of moving planar Riemann surfaces of class .
Currently displaying 1 –
10 of
10