Page 1

Displaying 1 – 10 of 10

Showing per page

Extension of holomorphic bundles to the disc (and Serre’s Problem on Stein bundles)

Jean-Pierre Rosay (2007)

Annales de l’institut Fourier

Holomorphic bundles, with fiber n , defined on open sets in by locally constant transition automorphisms, are shown to extend to holomorphic bundles on the Riemann sphere. In particular, it allows us to give an example of a non-Stein holomorphic bundle on the unit disc, with polynomial transition automorphisms.

Holomorphic line bundles and divisors on a domain of a Stein manifold

Makoto Abe (2007)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Let D be an open set of a Stein manifold X of dimension n such that H k ( D , 𝒪 ) = 0 for 2 k n - 1 . We prove that D is Stein if and only if every topologically trivial holomorphic line bundle L on D is associated to some Cartier divisor 𝔡 on D .

Invariant meromorphic functions on Stein spaces

Daniel Greb, Christian Miebach (2012)

Annales de l’institut Fourier

In this paper we develop fundamental tools and methods to study meromorphic functions in an equivariant setup. As our main result we construct quotients of Rosenlicht-type for Stein spaces acted upon holomorphically by complex-reductive Lie groups and their algebraic subgroups. In particular, we show that in this setup invariant meromorphic functions separate orbits in general position. Applications to almost homogeneous spaces and principal orbit types are given. Furthermore, we use the main result...

Manifolds with a unique embedding

Zbigniew Jelonek (2009)

Colloquium Mathematicae

We show that if X, Y are smooth, compact k-dimensional submanifolds of ℝⁿ and 2k+2 ≤ n, then each diffeomorphism ϕ: X → Y can be extended to a diffeomorphism Φ: ℝⁿ → ℝⁿ which is tame (to be defined in this paper). Moreover, if X, Y are real analytic manifolds and the mapping ϕ is analytic, then we can choose Φ to be also analytic. We extend this result to some interesting categories of closed (not necessarily compact) subsets of ℝⁿ, namely, to the category of Nash submanifolds...

Oka manifolds: From Oka to Stein and back

Franc Forstnerič (2013)

Annales de la faculté des sciences de Toulouse Mathématiques

Oka theory has its roots in the classical Oka-Grauert principle whose main result is Grauert’s classification of principal holomorphic fiber bundles over Stein spaces. Modern Oka theory concerns holomorphic maps from Stein manifolds and Stein spaces to Oka manifolds. It has emerged as a subfield of complex geometry in its own right since the appearance of a seminal paper of M. Gromov in 1989.In this expository paper we discuss Oka manifolds and Oka maps. We describe equivalent characterizations...

On complete intersections

Franc Forstnerič (2001)

Annales de l’institut Fourier

We construct closed complex submanifolds of n which are differential but not holomorphic complete intersections. We also prove a homotopy principle concerning the removal of intersections with certain complex subvarieties of n .

On regular Stein neighborhoods of a union of two totally real planes in ℂ²

Tadej Starčič (2016)

Annales Polonici Mathematici

We find regular Stein neighborhoods of a union of totally real planes M = (A+iI)ℝ² and N = ℝ² in ℂ², provided that the entries of a real 2 × 2 matrix A are sufficiently small. A key step in our proof is a local construction of a suitable function ρ near the origin. The sublevel sets of ρ are strongly Levi pseudoconvex and admit strong deformation retraction to M ∪ N.

Survey of Oka theory.

Forstnerič, Franc, Lárusson, Finnur (2011)

The New York Journal of Mathematics [electronic only]

[unknown]

Laura Geatti, Andrea Iannuzzi (0)

Annales de l’institut Fourier

Currently displaying 1 – 10 of 10

Page 1