Harnack estimates for weak supersolutions to nonlinear degenerate parabolic equations
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2008)
- Volume: 7, Issue: 4, page 673-716
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topKuusi, Tuomo. "Harnack estimates for weak supersolutions to nonlinear degenerate parabolic equations." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 7.4 (2008): 673-716. <http://eudml.org/doc/272265>.
@article{Kuusi2008,
abstract = {In this work we prove both local and global Harnack estimates for weak supersolutions to second order nonlinear degenerate parabolic partial differential equations in divergence form. We reduce the proof to an analysis of so-called hot and cold alternatives, and use the expansion of positivity together with a parabolic type of covering argument. Our proof uses only the properties of weak supersolutions. In particular, no comparison to weak solutions is needed.},
author = {Kuusi, Tuomo},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {degenerate -Laplacean; Moser's and Trudinger approach; hot and cold alternatives; Krylov-Safonov covering argument},
language = {eng},
number = {4},
pages = {673-716},
publisher = {Scuola Normale Superiore, Pisa},
title = {Harnack estimates for weak supersolutions to nonlinear degenerate parabolic equations},
url = {http://eudml.org/doc/272265},
volume = {7},
year = {2008},
}
TY - JOUR
AU - Kuusi, Tuomo
TI - Harnack estimates for weak supersolutions to nonlinear degenerate parabolic equations
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2008
PB - Scuola Normale Superiore, Pisa
VL - 7
IS - 4
SP - 673
EP - 716
AB - In this work we prove both local and global Harnack estimates for weak supersolutions to second order nonlinear degenerate parabolic partial differential equations in divergence form. We reduce the proof to an analysis of so-called hot and cold alternatives, and use the expansion of positivity together with a parabolic type of covering argument. Our proof uses only the properties of weak supersolutions. In particular, no comparison to weak solutions is needed.
LA - eng
KW - degenerate -Laplacean; Moser's and Trudinger approach; hot and cold alternatives; Krylov-Safonov covering argument
UR - http://eudml.org/doc/272265
ER -
References
top- [1] E. Acerbi and G. Mingione, Gradient estimates for a class of parabolic systems, Duke Math. J. 136 (2) (2007), 285–320. Zbl1113.35105MR2286632
- [2] D. G. Aronson and L. A. Caffarelli, The initial trace of a solution of the porous medium equation, Trans. Amer. Math. Soc. 280 (1) (1983), 351–366. Zbl0556.76084MR712265
- [3] D. G. Aronson and J. Serrin, Local behavior of solutions of quasilinear parabolic equations, Arch. Ration. Mech. Anal.25 (1967), 81–122. Zbl0154.12001MR244638
- [4] H. J. Choe and J. H. Lee, Cauchy problem for nonlinear parabolic equations, Hokkaido Math. J. 27 (1) (1998), 51–75. Zbl0902.35060MR1608612
- [5] B. E. J. Dahlberg and C. E. Kenig, Non-Negative solutions of the porous medium equation, Comm. Partial Differential Equations 9 (5) (1984), 409–437. Zbl0547.35057MR741215
- [6] P. Daskalopoulos and C. E. Kenig, “Degenerate Diffusions", EMS Tracts in Mathematics, Vol. 1, European Mathematical Society (EMS), Zürich, 2007, Initial value problems and local regularity theory. Zbl1205.35002MR2338118
- [7] E. De Giorgi, Sulla differenziabilità e l’analiticità delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Natur. 3 (3) (1957), 25–43. Zbl0084.31901MR93649
- [8] E. DiBenedetto, “Degenerate Parabolic Equations", Universitext, Springer-Verlag, New York, 1993. Zbl0794.35090MR1230384
- [9] E. DiBenedetto, U. Gianazza and V. Vespri, Intrinsic Harnack estimates for non-negative local solutions of degenerate parabolic equations, Acta Math.200 (2008), 181–209. Zbl1221.35213MR2413134
- [10] E. DiBenedetto, U. Gianazza and V. Vespri, Subpotential lower bounds for nonnegative solutions to certain quasi-linear degenerate parabolic equations, Duke Math. J.143 (2008), 1–15. Zbl1170.35054MR2414742
- [11] E. DiBenedetto and M. A. Herrero, On the Cauchy problem and initial traces for a degenerate parabolic equation, Trans. Amer. Math. Soc. 314 (1) (1989), 187–224. Zbl0691.35047MR962278
- [12] E. DiBenedetto, J. M. Urbano and V. Vespri, Current issues on singular and degenerate evolution equations, In: “Evolutionary Equations", Vol. I, Handb. Differ. Equ., 169–286, North-Holland, Amsterdam, 2004. Zbl1082.35002MR2103698
- [13] E. DiBenedetto and N. S. Trudinger, Harnack inequalities for quasiminima of variational integrals, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 295–308, MR MR778976 (86g:49007). Zbl0565.35012MR778976
- [14] U. Gianazza and V. Vespri, A Harnack inequality for a degenerate parabolic equation, J. Evol. Equ. 6 (2) (2006), 247–267. Zbl1112.35113MR2227696
- [15] M. Giaquinta, “Introduction to Regularity Theory for Nonlinear Elliptic Systems", Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1993. Zbl0786.35001MR1239172
- [16] J. Heinonen, “Lectures on Analysis on Metric Spaces", Universitext, Springer-Verlag, New York, 2001. Zbl0985.46008MR1800917
- [17] J. Heinonen, T. Kilpeläinen and O. Martio, “Nonlinear Potential Theory of Degenerate Elliptic Equations", Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 1993, Oxford Science Publications. Zbl1115.31001MR1207810
- [18] A. V. Ivanov, The Harnack inequality for generalized solutions of second order quasilinear parabolic equations, Trudy Mat. Inst. Steklov.102 (1967), 51–84. Zbl0204.11404MR232096
- [19] J. Kinnunen and N. Shanmugalingam, Regularity of quasi-minimizers on metric spaces, Manuscripta Math. 105 (3) (2001), 401–423. Zbl1006.49027MR1856619
- [20] N. V. Krylov and M. V. Safonov, A certain property of solutions of parabolic equations with measurable coefficients, Math. USSR Izv. 16 (1) (1981), 151–164. Zbl0464.35035MR563790
- [21] M. Kurihara, On a Harnack inequality for nonlinear parabolic equations, Publ. Res. Inst. Math. Sci. 3 (1967/1968), 211–241. Zbl0162.42102MR229954
- [22] J.-L. Lions, “Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires", Dunod, 1969. Zbl0189.40603
- [23] J. Moser, On Harnack’s theorem for elliptic differential equations, Comm. Pure Appl. Math.14 (1961), 577–591. Zbl0111.09302MR159138
- [24] J. Moser, A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math.17 (1964), 101–134. Zbl0149.06902MR159139
- [25] J. Moser, Correction to A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math.20 (1967), 231–236. Zbl0149.07001MR203268
- [26] J. Moser, On a pointwise estimate for parabolic differential equations, Comm. Pure Appl. Math.24 (1971), 727–740. Zbl0227.35016MR288405
- [27] N. S. Trudinger, Pointwise estimates and quasilinear parabolic equations, Comm. Pure Appl. Math.21 (1968), 205–226. Zbl0159.39303MR226168
- [28] J. M. Urbano, “The Method of Intrinsic Scaling. a Systematic Approach to Regularity for Degenerate and Singular PDEs”, Lecture Notes in Mathematics, Vol. 1930, Springer, 2008. Zbl1158.35003MR2451216
- [29] J. L. Vazquez, “The Porous Medium Equation Mathematical Theory", Oxford Mathematical Monographs, Clarendon Press, 2006. Zbl1107.35003MR2286292
- [30] J. L. Vazquez, “Smoothing and Decay Estimates for Nonlinear Diffusion Equations Equations of Porous Medium Type", Vol. 33 of Oxford Lecture Series in Mathematics and Its Applications, Oxford University Press, 2006. Zbl1113.35004MR2282669
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.