Harnack estimates for weak supersolutions to nonlinear degenerate parabolic equations

Tuomo Kuusi

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2008)

  • Volume: 7, Issue: 4, page 673-716
  • ISSN: 0391-173X

Abstract

top
In this work we prove both local and global Harnack estimates for weak supersolutions to second order nonlinear degenerate parabolic partial differential equations in divergence form. We reduce the proof to an analysis of so-called hot and cold alternatives, and use the expansion of positivity together with a parabolic type of covering argument. Our proof uses only the properties of weak supersolutions. In particular, no comparison to weak solutions is needed.

How to cite

top

Kuusi, Tuomo. "Harnack estimates for weak supersolutions to nonlinear degenerate parabolic equations." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 7.4 (2008): 673-716. <http://eudml.org/doc/272265>.

@article{Kuusi2008,
abstract = {In this work we prove both local and global Harnack estimates for weak supersolutions to second order nonlinear degenerate parabolic partial differential equations in divergence form. We reduce the proof to an analysis of so-called hot and cold alternatives, and use the expansion of positivity together with a parabolic type of covering argument. Our proof uses only the properties of weak supersolutions. In particular, no comparison to weak solutions is needed.},
author = {Kuusi, Tuomo},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {degenerate -Laplacean; Moser's and Trudinger approach; hot and cold alternatives; Krylov-Safonov covering argument},
language = {eng},
number = {4},
pages = {673-716},
publisher = {Scuola Normale Superiore, Pisa},
title = {Harnack estimates for weak supersolutions to nonlinear degenerate parabolic equations},
url = {http://eudml.org/doc/272265},
volume = {7},
year = {2008},
}

TY - JOUR
AU - Kuusi, Tuomo
TI - Harnack estimates for weak supersolutions to nonlinear degenerate parabolic equations
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2008
PB - Scuola Normale Superiore, Pisa
VL - 7
IS - 4
SP - 673
EP - 716
AB - In this work we prove both local and global Harnack estimates for weak supersolutions to second order nonlinear degenerate parabolic partial differential equations in divergence form. We reduce the proof to an analysis of so-called hot and cold alternatives, and use the expansion of positivity together with a parabolic type of covering argument. Our proof uses only the properties of weak supersolutions. In particular, no comparison to weak solutions is needed.
LA - eng
KW - degenerate -Laplacean; Moser's and Trudinger approach; hot and cold alternatives; Krylov-Safonov covering argument
UR - http://eudml.org/doc/272265
ER -

References

top
  1. [1] E. Acerbi and G. Mingione, Gradient estimates for a class of parabolic systems, Duke Math. J. 136 (2) (2007), 285–320. Zbl1113.35105MR2286632
  2. [2] D. G. Aronson and L. A. Caffarelli, The initial trace of a solution of the porous medium equation, Trans. Amer. Math. Soc. 280 (1) (1983), 351–366. Zbl0556.76084MR712265
  3. [3] D. G. Aronson and J. Serrin, Local behavior of solutions of quasilinear parabolic equations, Arch. Ration. Mech. Anal.25 (1967), 81–122. Zbl0154.12001MR244638
  4. [4] H. J. Choe and J. H. Lee, Cauchy problem for nonlinear parabolic equations, Hokkaido Math. J. 27 (1) (1998), 51–75. Zbl0902.35060MR1608612
  5. [5] B. E. J. Dahlberg and C. E. Kenig, Non-Negative solutions of the porous medium equation, Comm. Partial Differential Equations 9 (5) (1984), 409–437. Zbl0547.35057MR741215
  6. [6] P. Daskalopoulos and C. E. Kenig, “Degenerate Diffusions", EMS Tracts in Mathematics, Vol. 1, European Mathematical Society (EMS), Zürich, 2007, Initial value problems and local regularity theory. Zbl1205.35002MR2338118
  7. [7] E. De Giorgi, Sulla differenziabilità e l’analiticità delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Natur. 3 (3) (1957), 25–43. Zbl0084.31901MR93649
  8. [8] E. DiBenedetto, “Degenerate Parabolic Equations", Universitext, Springer-Verlag, New York, 1993. Zbl0794.35090MR1230384
  9. [9] E. DiBenedetto, U. Gianazza and V. Vespri, Intrinsic Harnack estimates for non-negative local solutions of degenerate parabolic equations, Acta Math.200 (2008), 181–209. Zbl1221.35213MR2413134
  10. [10] E. DiBenedetto, U. Gianazza and V. Vespri, Subpotential lower bounds for nonnegative solutions to certain quasi-linear degenerate parabolic equations, Duke Math. J.143 (2008), 1–15. Zbl1170.35054MR2414742
  11. [11] E. DiBenedetto and M. A. Herrero, On the Cauchy problem and initial traces for a degenerate parabolic equation, Trans. Amer. Math. Soc. 314 (1) (1989), 187–224. Zbl0691.35047MR962278
  12. [12] E. DiBenedetto, J. M. Urbano and V. Vespri, Current issues on singular and degenerate evolution equations, In: “Evolutionary Equations", Vol. I, Handb. Differ. Equ., 169–286, North-Holland, Amsterdam, 2004. Zbl1082.35002MR2103698
  13. [13] E. DiBenedetto and N. S. Trudinger, Harnack inequalities for quasiminima of variational integrals, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 295–308, MR MR778976 (86g:49007). Zbl0565.35012MR778976
  14. [14] U. Gianazza and V. Vespri, A Harnack inequality for a degenerate parabolic equation, J. Evol. Equ. 6 (2) (2006), 247–267. Zbl1112.35113MR2227696
  15. [15] M. Giaquinta, “Introduction to Regularity Theory for Nonlinear Elliptic Systems", Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1993. Zbl0786.35001MR1239172
  16. [16] J. Heinonen, “Lectures on Analysis on Metric Spaces", Universitext, Springer-Verlag, New York, 2001. Zbl0985.46008MR1800917
  17. [17] J. Heinonen, T. Kilpeläinen and O. Martio, “Nonlinear Potential Theory of Degenerate Elliptic Equations", Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 1993, Oxford Science Publications. Zbl1115.31001MR1207810
  18. [18] A. V. Ivanov, The Harnack inequality for generalized solutions of second order quasilinear parabolic equations, Trudy Mat. Inst. Steklov.102 (1967), 51–84. Zbl0204.11404MR232096
  19. [19] J. Kinnunen and N. Shanmugalingam, Regularity of quasi-minimizers on metric spaces, Manuscripta Math. 105 (3) (2001), 401–423. Zbl1006.49027MR1856619
  20. [20] N. V. Krylov and M. V. Safonov, A certain property of solutions of parabolic equations with measurable coefficients, Math. USSR Izv. 16 (1) (1981), 151–164. Zbl0464.35035MR563790
  21. [21] M. Kurihara, On a Harnack inequality for nonlinear parabolic equations, Publ. Res. Inst. Math. Sci. 3 (1967/1968), 211–241. Zbl0162.42102MR229954
  22. [22] J.-L. Lions, “Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires", Dunod, 1969. Zbl0189.40603
  23. [23] J. Moser, On Harnack’s theorem for elliptic differential equations, Comm. Pure Appl. Math.14 (1961), 577–591. Zbl0111.09302MR159138
  24. [24] J. Moser, A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math.17 (1964), 101–134. Zbl0149.06902MR159139
  25. [25] J. Moser, Correction to A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math.20 (1967), 231–236. Zbl0149.07001MR203268
  26. [26] J. Moser, On a pointwise estimate for parabolic differential equations, Comm. Pure Appl. Math.24 (1971), 727–740. Zbl0227.35016MR288405
  27. [27] N. S. Trudinger, Pointwise estimates and quasilinear parabolic equations, Comm. Pure Appl. Math.21 (1968), 205–226. Zbl0159.39303MR226168
  28. [28] J. M. Urbano, “The Method of Intrinsic Scaling. a Systematic Approach to Regularity for Degenerate and Singular PDEs”, Lecture Notes in Mathematics, Vol. 1930, Springer, 2008. Zbl1158.35003MR2451216
  29. [29] J. L. Vazquez, “The Porous Medium Equation Mathematical Theory", Oxford Mathematical Monographs, Clarendon Press, 2006. Zbl1107.35003MR2286292
  30. [30] J. L. Vazquez, “Smoothing and Decay Estimates for Nonlinear Diffusion Equations Equations of Porous Medium Type", Vol. 33 of Oxford Lecture Series in Mathematics and Its Applications, Oxford University Press, 2006. Zbl1113.35004MR2282669

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.