A regularity theory for scalar local minimizers of splitting-type variational integrals

Michael Bildhauer; Martin Fuchs; Xiao Zhong

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2007)

  • Volume: 6, Issue: 3, page 385-404
  • ISSN: 0391-173X

Abstract

top
Starting from Giaquinta’s counterexample [12] we introduce the class of splitting functionals being of ( p , q ) -growth with exponents p q < and show for the scalar case that locally bounded local minimizers are of class C 1 , μ . Note that to our knowledge the only C 1 , μ -results without imposing a relation between p and q concern the case of two independent variables as it is outlined in Marcellini’s paper [15], Theorem A, and later on in the work of Fusco and Sbordone [10], Theorem 4.2.

How to cite

top

Bildhauer, Michael, Fuchs, Martin, and Zhong, Xiao. "A regularity theory for scalar local minimizers of splitting-type variational integrals." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 6.3 (2007): 385-404. <http://eudml.org/doc/272272>.

@article{Bildhauer2007,
abstract = {Starting from Giaquinta’s counterexample [12] we introduce the class of splitting functionals being of $(p, q)$-growth with exponents $p \le q &lt; \infty $ and show for the scalar case that locally bounded local minimizers are of class $C^\{1, \mu \}$. Note that to our knowledge the only $C^\{1,\mu \}$-results without imposing a relation between $p$ and $q$ concern the case of two independent variables as it is outlined in Marcellini’s paper [15], Theorem A, and later on in the work of Fusco and Sbordone [10], Theorem 4.2.},
author = {Bildhauer, Michael, Fuchs, Martin, Zhong, Xiao},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {regularity for local minimizers; integral functionals; elliptic conditions},
language = {eng},
number = {3},
pages = {385-404},
publisher = {Scuola Normale Superiore, Pisa},
title = {A regularity theory for scalar local minimizers of splitting-type variational integrals},
url = {http://eudml.org/doc/272272},
volume = {6},
year = {2007},
}

TY - JOUR
AU - Bildhauer, Michael
AU - Fuchs, Martin
AU - Zhong, Xiao
TI - A regularity theory for scalar local minimizers of splitting-type variational integrals
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2007
PB - Scuola Normale Superiore, Pisa
VL - 6
IS - 3
SP - 385
EP - 404
AB - Starting from Giaquinta’s counterexample [12] we introduce the class of splitting functionals being of $(p, q)$-growth with exponents $p \le q &lt; \infty $ and show for the scalar case that locally bounded local minimizers are of class $C^{1, \mu }$. Note that to our knowledge the only $C^{1,\mu }$-results without imposing a relation between $p$ and $q$ concern the case of two independent variables as it is outlined in Marcellini’s paper [15], Theorem A, and later on in the work of Fusco and Sbordone [10], Theorem 4.2.
LA - eng
KW - regularity for local minimizers; integral functionals; elliptic conditions
UR - http://eudml.org/doc/272272
ER -

References

top
  1. [1] R. A. Adams, “Sobolev Spaces", Academic Press, New York-San Francisco-London, 1975. Zbl1098.46001MR450957
  2. [2] M. Bildhauer, “Convex Variational Problems: Linear, Nearly Linear and Anisotropic Growth Conditions", Lecture Notes in Mathematics 1818, Springer, Berlin-Heidelberg-New York, 2003. Zbl1033.49001MR1998189
  3. [3] M. Bildhauer and M. Fuchs, Elliptic variational problems with nonstandard growth, International Mathematical Series 1, In: “Nonlinear problems in mathematical physics and related topics I, in honor of Prof. O.A. Ladyzhenskaya”, T. Rozhkovskaya (ed.), Novosibirsk, Russia, March 2002 (in Russian), 49–62; Kluwer/Plenum Publishers, June 2002 (in English), 53–66. Zbl1054.49026MR1970604
  4. [4] M. Bildhauer and M. Fuchs, Higher integrability of the gradient for vectorial minimizers of decomposable variational integrals, Manuscripta Math.123 (2007), 269–283. Zbl1120.49031MR2314085
  5. [5] M. Bildhauer, M. Fuchs and G. Mingione, A priori gradient bounds and local C 1 , α -estimates for (double) obstacle problems under nonstandard growth conditions, Z. Anal. Anwendungen20 (2001), 959–985. Zbl1011.49024MR1884515
  6. [6] M. Bildhauer, M. Fuchs and X. Zhong, Variational integrals with a wide range of anisotropy, Algebra i Analiz.18 (2006), 46–71. Zbl1284.49049MR2301040
  7. [7] H. J. Choe, Interior behaviour of minimizers for certain functionals with nonstandard growth, Nonlinear Anal. 19.10 (1992), 933–945. Zbl0786.35040MR1192273
  8. [8] L. Esposito, F. Leonetti and G. Mingione, Regularity for minimizers of functionals with p - q growth, Nonlinear Differential Equations Appl.6 (1999), 133–148. Zbl0928.35044MR1694803
  9. [9] L. Esposito, F. Leonetti and G. Mingione, Regularity results for minimizers of irregular integrals with ( p , q ) -growth, Forum. Math.14 (2002), 245–272. Zbl0999.49022MR1880913
  10. [10] N. Fusco and C. Sbordone, Some remarks on the regularity of minima of anisotropic integrals, Comm. Partial Differential Equatins18 (1993), 153–167. Zbl0795.49025MR1211728
  11. [11] M. Giaquinta, “Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems", Ann. Math. Studies 105, Princeton University Press, Princeton, 1983. Zbl0516.49003MR717034
  12. [12] M. Giaquinta, Growth conditions and regularity, a counterexample, Manuscripta Math.59 (1987), 245–248. Zbl0638.49005MR905200
  13. [13] D. Gilbarg and N. S. Trudinger, “Elliptic Partial Differential Equations of Second Order", Grundlehren der math. Wiss. 224, second ed., revised third print., Springer, Berlin-Heidelberg-New York, 1998. Zbl0361.35003
  14. [14] M. C. Hong, Some remarks on the minimizers of variational integrals with non standard growth conditions, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (7) 6-A (1992), 91–101. Zbl0768.49022MR1164739
  15. [15] P. Marcellini, Regularity of minimizers of integrals of the calculus of variations with non standard growth conditions, Arch. Ration. Mech. Anal.105 (1989), 267–284. Zbl0667.49032MR969900
  16. [16] P. Marcellini, Everywhere regularity for a class of elliptic systems without growth conditions, Ann. Scuola Norm. Sup. Pisa Cl. Sci.23 (1996), 1–25. Zbl0922.35031MR1401415
  17. [17] U. Massari and M. Miranda, “Minimal Surfaces of Codimension One", North-Holland Mathematics Studies 91, North-Holland, Amsterdam-New York-Oxford, 1983. Zbl0565.49030MR795963
  18. [18] G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinues, Ann. Inst. Fourier (Grenoble) 15.1 (1965), 189–258. Zbl0151.15401MR192177
  19. [19] N. N. Ural’tseva and A. B. Urdaletova, The boundedness of the gradients of generalized solutions of degenerate quasilinear nonuniformly elliptic equations, Vestn. Leningr. Univ. Mat. Mekh. Astron. 4 (1983), 50–56 (in Russian); English translation: Vestn. Leningr. Univ. Math. 16 (1984), 263–270. Zbl0569.35029MR725829

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.