Hamilton-Jacobi flows and characterization of solutions of Aronsson equations
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2007)
- Volume: 6, Issue: 1, page 1-13
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topJuutinen, Petri, and Saksman, Eero. "Hamilton-Jacobi flows and characterization of solutions of Aronsson equations." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 6.1 (2007): 1-13. <http://eudml.org/doc/272275>.
@article{Juutinen2007,
abstract = {In this note, we verify the conjecture of Barron, Evans and Jensen [3] regarding the characterization of viscosity solutions of general Aronsson equations in terms of the properties of associated forward and backwards Hamilton-Jacobi flows. A special case of this result is analogous to the characterization of infinity harmonic functions in terms of convexity and concavity of the functions $r\mapsto \max _\{y\in B_r(x)\} u(y)$ and $r\mapsto \min _\{y\in B_r(x)\} u(y)$, respectively.},
author = {Juutinen, Petri, Saksman, Eero},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {1},
pages = {1-13},
publisher = {Scuola Normale Superiore, Pisa},
title = {Hamilton-Jacobi flows and characterization of solutions of Aronsson equations},
url = {http://eudml.org/doc/272275},
volume = {6},
year = {2007},
}
TY - JOUR
AU - Juutinen, Petri
AU - Saksman, Eero
TI - Hamilton-Jacobi flows and characterization of solutions of Aronsson equations
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2007
PB - Scuola Normale Superiore, Pisa
VL - 6
IS - 1
SP - 1
EP - 13
AB - In this note, we verify the conjecture of Barron, Evans and Jensen [3] regarding the characterization of viscosity solutions of general Aronsson equations in terms of the properties of associated forward and backwards Hamilton-Jacobi flows. A special case of this result is analogous to the characterization of infinity harmonic functions in terms of convexity and concavity of the functions $r\mapsto \max _{y\in B_r(x)} u(y)$ and $r\mapsto \min _{y\in B_r(x)} u(y)$, respectively.
LA - eng
UR - http://eudml.org/doc/272275
ER -
References
top- [1] G. Aronsson, Extension of functions satisfying Lipschitz conditions, Ark. Mat.6 (1967), 551–561. Zbl0158.05001MR217665
- [2] G. Aronsson, M. G. Crandall and P. Juutinen, A tour of the theory of absolutely minimizing functions, Bull. Amer. Math. Soc. (N.S.) 41 (2004), 439–505. Zbl1150.35047MR2083637
- [3] E. N. Barron, L. C. Evans and R. R. Jensen, The infinity Laplacian, Aronsson’s equation and their generalizations, preprint. Zbl1125.35019MR2341994
- [4] E. N. Barron, R. R. Jensen and C. Y. Wang, The Euler equation and absolute minimizers of functionals, Arch. Rational Mech. Anal.157 (2001), 255–283. Zbl0979.49003MR1831173
- [5] T. Champion and L. De Pascale, A principle of comparison with distance functions for absolute minimizers, J. Convex Anal., to appear. Zbl1128.49024MR2341302
- [6] M. G. Crandall, An efficient derivation of the Aronsson equation, Arch. Rational Mech. Anal.167 (2003), 271–279. Zbl1090.35067MR1981858
- [7] M. G. Crandall, L. C. Evans and R. F. Gariepy, Optimal Lipschitz extensions and the infinity Laplacian, Calc. Var. Partial Differential Equations13 (2001), 123–139. Zbl0996.49019MR1861094
- [8] M. G. Crandall, H. Ishii and P.-L. Lions, User’s guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.) 27 (1992), 1–67. Zbl0755.35015MR1118699
- [9] L. C. Evans, “Partial Differential Equations”, Graduate Studies in Mathematics, Vol. 19, American Mathematical Society, Providence, RI, 1998. Zbl0902.35002MR1625845
- [10] R. Gariepy, C. Y. Wang and Y. Yu, Generalized cone comparison principle for viscosity solutions of the Aronsson equation and absolute minimizers, Comm. Partial Differential Equations31 (2006), 1027–1046. Zbl1237.35052MR2254602
- [11] R. R. Jensen, Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient, Arch. Rational Mech. Anal.123 (1993), 51–74. Zbl0789.35008MR1218686
- [12] R. R. Jensen, P.-L. Lions and P. E. Souganidis, A uniqueness result for viscosity solutions of second order fully nonlinear partial differential equations, Proc. Amer. Math. Soc.102 (1988), 975–978. Zbl0662.35048MR934877
- [13] Y. Peres, O. Schramm, S. Sheffield and D. B. Wilson, Tug-of-war and the infinity Laplacian, preprint (available at http://arxiv.org/archive/math) Zbl1206.91002MR2449057
- [14] R. Schneider, “Convex Bodies: The Brunn-Minkowski Theory”, Cambridge University Press, 1993. Zbl1143.52002MR1216521
- [15] T. Strömberg, The Hopf-Lax formula gives the unique viscosity solution, Differential Integral Equations15 (2002), 47–52. Zbl1026.49023MR1869821
- [16] C. Wang and Y. Yu, -regularity of the Aronsson equation in , Ann. Inst. H. Poincaré Anal. Non Linéaire, to appear. Zbl1179.35124
- [17] E. Zeidler, “Nonlinear Functional Analysis and its Applications. III. Variational Methods and Optimization”, Springer-Verlag, New York, 1985. Zbl0583.47051MR768749
- [18] Y. Yu variational problems and Aronsson equations, Arch. Ration. Mech. Anal.182 (2006), 153–180. Zbl1130.49025MR2247955
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.