C 1 -regularity of the Aronsson equation in R 2

Changyou Wang; Yifeng Yu

Annales de l'I.H.P. Analyse non linéaire (2008)

  • Volume: 25, Issue: 4, page 659-678
  • ISSN: 0294-1449

How to cite

top

Wang, Changyou, and Yu, Yifeng. "${C}^{1}$-regularity of the Aronsson equation in ${R}^{2}$." Annales de l'I.H.P. Analyse non linéaire 25.4 (2008): 659-678. <http://eudml.org/doc/78805>.

@article{Wang2008,
author = {Wang, Changyou, Yu, Yifeng},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {viscosity solution; discrete gradient flow; Aronsson equation},
language = {eng},
number = {4},
pages = {659-678},
publisher = {Elsevier},
title = {$\{C\}^\{1\}$-regularity of the Aronsson equation in $\{R\}^\{2\}$},
url = {http://eudml.org/doc/78805},
volume = {25},
year = {2008},
}

TY - JOUR
AU - Wang, Changyou
AU - Yu, Yifeng
TI - ${C}^{1}$-regularity of the Aronsson equation in ${R}^{2}$
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 4
SP - 659
EP - 678
LA - eng
KW - viscosity solution; discrete gradient flow; Aronsson equation
UR - http://eudml.org/doc/78805
ER -

References

top
  1. [1] Aronsson G., Minimization problems for the functional sup x F ( x , f ( x ) , f ( x , Ark. Mat.6 (1965) 33-53. Zbl0156.12502MR196551
  2. [2] Aronsson G., Minimization problems for the functional sup x F ( x , f ( x ) , f ( x . II, Ark. Mat.6 (1966) 409-431. Zbl0156.12502MR203541
  3. [3] Aronsson G., Minimization problems for the functional sup x F ( x , f ( x ) , f ( x . III, Ark. Mat.7 (1969) 509-512. Zbl0181.11902MR240690
  4. [4] Aronsson G., Extension of functions satisfying Lipschitz conditions, Ark. Mat.6 (1967) 551-561. Zbl0158.05001MR217665
  5. [5] Aronsson G., On the partial differential equation u x 2 u x x + 2 u x u y u x y + u y 2 u y y = 0 , Ark. Mat.7 (1968) 395-425. Zbl0162.42201MR237962
  6. [6] Aronsson G., On certain singular solutions of the partial differential equation u x 2 u x x + 2 u x u y u x y + u y 2 u y y = 0 , Manuscripta Math.47 (1–3) (1984) 133-151. Zbl0551.35018MR744316
  7. [7] Aronsson G., Crandall M., Juutinen P., A tour of the theory of absolutely minimizing functions, Bull. Amer. Math. Soc. (N.S.)41 (4) (2004) 439-505, (electronic). Zbl1150.35047MR2083637
  8. [8] Barron N., Viscosity solutions and analysis in L , in: Nonlinear Analysis, Differential Equations and Control, Montreal, QC, 1998, NATO Sci. Ser. C Math. Phys. Sci., vol. 528, Kluwer Acad. Publ., Dordrecht, 1999, pp. 1-60. Zbl0973.49024MR1695005
  9. [9] Barron N., Jensen R., Minimizing the L -norm of the gradient with an energy constraint, Comm. Partial Differential Equations30 (10–12) (2005) 1741-1772. Zbl1105.35028MR2182310
  10. [10] Barron N., Jensen R., Wang C.Y., Lower semicontinuity of L functionals, Ann. Inst. H. Poincaré Anal. Non Linéaire18 (4) (2001) 495-517. Zbl1034.49008MR1841130
  11. [11] Barron N., Jensen R., Wang C.Y., The Euler equation and absolute minimizers of L functionals, Arch. Ration. Mech. Anal.157 (4) (2001) 255-283. Zbl0979.49003MR1831173
  12. [12] Crandall M., An efficient derivation of the Aronsson equation, Arch. Ration. Mech. Anal.167 (4) (2003) 271-279. Zbl1090.35067MR1981858
  13. [13] M. Crandall, The infinity-Laplace equation and the elements of calculus of variations in L-infinity, in: CIME Lecture Notes, in press. 
  14. [14] M. Crandall, The continuous gradient flow for the infinity-Laplace equation, Private communication. 
  15. [15] M. Crandall, L.C. Evans, A remark on infinity harmonic functions, in: Proceedings of the USA–Chile Workshop on Nonlinear Analysis, Via del Mar-Valparaiso, 2000 (electronic), Electron. J. Differ. Equ. Conf., 6, pp. 123–129. Zbl0964.35061MR1804769
  16. [16] Crandall M., Evans C., Gariepy R., Optimal Lipschitz extensions and the infinity Laplacian, Calc. Var. Partial Differential Equations13 (2) (2001) 123-139. Zbl0996.49019MR1861094
  17. [17] Crandall M., Ishii H., Lions P.L., User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.)27 (1) (1992) 1-67. Zbl0755.35015MR1118699
  18. [18] Gariepy R., Wang C.Y., Yu Y., Generalized cone comparison principle for viscosity solutions of the Aronsson equation and absolute minimizers, Comm. Partial Differential Equations31 (7–9) (2006) 1027-1046. Zbl1237.35052MR2254602
  19. [19] Jensen R., Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient, Arch. Ration. Mech. Anal.123 (1) (1993) 51-74. Zbl0789.35008MR1218686
  20. [20] Morrey C.B., Quasi-convexity and the lower semicontinuity of multiple integrals, Pacific J. Math.2 (1952) 25-53. Zbl0046.10803MR54865
  21. [21] Savin O., C 1 -regularity for infinity harmonic functions in dimensions two, Arch. Ration. Mech. Anal.176 (3) (2005) 351-361. Zbl1112.35070MR2185662
  22. [22] Yu Y., L -variational problems and the Aronsson equations, Arch. Ration. Mech. Anal.182 (1) (2006) 153-180. Zbl1130.49025MR2247955

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.