A unified approach to the theory of separately holomorphic mappings
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2008)
- Volume: 7, Issue: 2, page 181-240
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topNguyên, Viêt-Anh. "A unified approach to the theory of separately holomorphic mappings." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 7.2 (2008): 181-240. <http://eudml.org/doc/272276>.
@article{Nguyên2008,
abstract = {We extend the theory of separately holomorphic mappings between complex analytic spaces. Our method is based on Poletsky theory of discs, Rosay theorem on holomorphic discs and our recent joint-work with Pflug on boundary cross theorems in dimension $1.$ It also relies on our new technique of conformal mappings and a generalization of Siciak’s relative extremal function. Our approach illustrates the unified character: “From local information to global extensions”. Moreover, it avoids systematically the use of the classical method of doubly orthogonal bases of Bergman type.},
author = {Nguyên, Viêt-Anh},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {separately holomorphic mapping; analytic spaces},
language = {eng},
number = {2},
pages = {181-240},
publisher = {Scuola Normale Superiore, Pisa},
title = {A unified approach to the theory of separately holomorphic mappings},
url = {http://eudml.org/doc/272276},
volume = {7},
year = {2008},
}
TY - JOUR
AU - Nguyên, Viêt-Anh
TI - A unified approach to the theory of separately holomorphic mappings
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2008
PB - Scuola Normale Superiore, Pisa
VL - 7
IS - 2
SP - 181
EP - 240
AB - We extend the theory of separately holomorphic mappings between complex analytic spaces. Our method is based on Poletsky theory of discs, Rosay theorem on holomorphic discs and our recent joint-work with Pflug on boundary cross theorems in dimension $1.$ It also relies on our new technique of conformal mappings and a generalization of Siciak’s relative extremal function. Our approach illustrates the unified character: “From local information to global extensions”. Moreover, it avoids systematically the use of the classical method of doubly orthogonal bases of Bergman type.
LA - eng
KW - separately holomorphic mapping; analytic spaces
UR - http://eudml.org/doc/272276
ER -
References
top- [1] R. A. Airapetyan and G. M. Henkin, Analytic continuation of CR-functions across the “edge of the wedge", Dokl. Akad. Nauk SSSR 259 (1981), 777–781 (Russian). English transl.: Soviet Math. Dokl. 24 (1981), 128–132. MR624846
- [2] R. A. Airapetyan and G. M. Henkin, Integral representations of differential forms on Cauchy-Riemann manifolds and the theory of CR-functions. II, Mat. Sb. 127 (1985), 92–112, (Russian). English transl.: Math. USSR-Sb. 55 (1986), 99–111. Zbl0593.32015MR791319
- [3] O. Alehyane and J. M. Hecart, Propriété de stabilité de la fonction extrémale relative, Potential Anal.21 (2004), 363–373. Zbl1064.32024MR2081144
- [4] K. Adachi, M. Suzuki and M. Yoshida, Continuation of holomorphic mappings with values in a complex Lie group, Pacific J. Math.47 (1973), 1–4. Zbl0237.32008MR352526
- [5] O. Alehyane and A. Zeriahi, Une nouvelle version du théorème d’extension de Hartogs pour les applications séparément holomorphes entre espaces analytiques, Ann. Polon. Math.76 (2001), 245–278. Zbl0979.32011MR1841529
- [6] E. Bedford, “The operator on Complex Spaces”, Semin. P. Lelong - H. Skoda, Analyse, Années 1980/81, Lect. Notes Math. 919 (1982), 294–323. Zbl0479.32006MR658889
- [7] E. Bedford and B. A. Taylor, A new capacity for plurisubharmonic functions, Acta Math.149 (1982), 1–40. Zbl0547.32012MR674165
- [8] S. Bernstein, “Sur l’Ordre de la Meilleure Approximation des Fonctions Continues par des Polynômes de Degré Donné”, Bruxelles, 1912. Zbl45.0633.03JFM45.0633.03
- [9] L. M. Drużkowski, A generalization of the Malgrange–Zerner theorem, Ann. Polon. Math.38 (1980), 181–186. Zbl0461.32004MR599243
- [10] A. Edigarian, Analytic discs method in complex analysis, Diss. Math. 402 (2002), 56. Zbl0993.31003MR1897580
- [11] G. M. Goluzin, “ Geometric Theory of Functions of a Complex Variable”, (English), Providence, R. I.: American Mathematical Society (AMS). VI, 1969, p. 676. Zbl0183.07502MR247039
- [12] A. A. Gonchar, On analytic continuation from the “edge of the wedge" theorem, Ann. Acad. Sci. Fenn. Math. Diss.10 (1985), 221–225. Zbl0603.32008MR802482
- [13] A. A. Gonchar, On Bogolyubov’s “edge-of-the-wedge" theorem, Proc. Steklov Inst. Math.228 (2000), 18–24. Zbl0988.32009MR1782569
- [14] F. Hartogs, Zur Theorie der analytischen Funktionen mehrer unabhängiger Veränderlichen, insbesondere über die Darstellung derselben durch Reihen, welche nach Potenzen einer Veränderlichen fortschreiten, Math. Ann.62 (1906), 1–88. Zbl37.0444.01MR1511365JFM37.0444.01
- [15] B. Jöricke, The two-constants theorem for functions of several complex variables, (Russian), Math. Nachr. 107 (1982), 17–52. Zbl0526.32003MR695734
- [16] B. Josefson, On the equivalence between polar and globally polar sets for plurisubharmonic functions on , Ark. Mat.16 (1978), 109–115. Zbl0383.31003MR590078
- [17] S. M. Ivashkovich, The Hartogs phenomenon for holomorphically convex Kähler manifolds, Math. USSR-Izv. 29 (1997), 225–232. Zbl0618.32011
- [18] M. Jarnicki and P. Pflug, “Extension of Holomorphic Functions”, de Gruyter Expositions in Mathematics n. 34, Walter de Gruyter, 2000. Zbl0976.32007MR1797263
- [19] M. Jarnicki and P. Pflug, Invariant distances and metrics in complex analysis—revisited, Dissertationes Math. (Rozprawy Math.) 430 (2005). Zbl1085.32005MR2167637
- [20] M. Klimek, “Pluripotential Theory”, London Mathematical society monographs, Oxford Univ. Press., n. 6, 1991. Zbl0742.31001MR1150978
- [21] H. Komatsu, A local version of Bochner’s tube theorem, J. Fac. Sci., Univ. Tokyo, Sect. I A 19 (1972), 201–214. Zbl0239.32012MR316749
- [22] F. Lárusson and R. Sigurdsson, Plurisubharmonic functions and analytic discs on manifolds, J. Reine Angew. Math.501 (1998), 1–39. Zbl0901.31004MR1637837
- [23] Nguyên Thanh Vân, Separate analyticity and related subjects, Vietnam J. Math.25 (1997), 81–90. Zbl0898.32002MR1681531
- [24] Nguyên Thanh Vân, Note on doubly orthogonal system of Bergman, Linear Topological Spaces and Complex Analysis3 (1997), 157–159. Zbl0910.46009MR1632495
- [25] Nguyên Thanh Vân and A. Zeriahi, Familles de polynômes presque partout bornées, Bull. Sci. Math.107 (1983), 81–89. Zbl0523.32011MR699992
- [26] Nguyên Thanh Vân and A. Zeriahi, Une extension du théorème de Hartogs sur les fonctions séparément analytiques, In: “ Analyse Complexe Multivariable, Récents Développements”, A. Meril (ed.), EditEl, Rende, 1991, 183–194. Zbl0918.32001MR1228880
- [27] Nguyên Thanh Vân and A. Zeriahi, Systèmes doublement orthogonaux de fonctions holomorphes et applications, Banach Center Publ.31 (1995), 281–297. Zbl0844.31003MR1341397
- [28] V.-A. Nguyên, A general version of the Hartogs extension theorem for separately holomorphic mappings between complex analytic spaces, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (V) 4 (2005), 219–254. Zbl1170.32306MR2163556
- [29] V.-A. Nguyên, Conical plurisubharmonic measure and new cross theorems, in preparation. Zbl1188.32009
- [30] V.-A. Nguyên, Recent developments in the theory of separately holomorphic mappings, http://publications.ictp.it, IC/2007/074, 28 pages. Zbl1189.32005
- [31] V.-A. Nguyên and P. Pflug, Boundary cross theorem in dimension with singularities, Indiana Univ. Math. J., to appear. Zbl1171.32005MR2504418
- [32] V.-A. Nguyên and P. Pflug, Cross theorems with singularities. http://publications.ictp.it, IC/2007/073. Zbl1189.32006
- [33] P. Pflug, Extension of separately holomorphic functions–a survey 1899–2001, Ann. Polon. Math.80 (2003), 21–36. Zbl1023.32002MR1972831
- [34] P. Pflug and V.-A. Nguyên, A boundary cross theorem for separately holomorphic functions, Ann. Polon. Math.84 (2004), 237–271. Zbl1068.32010MR2110930
- [35] P. Pflug and V.-A. Nguyên, Boundary cross theorem in dimension , Ann. Polon. Math.90 (2007), 149-192. Zbl1122.32006MR2289181
- [36] P. Pflug and V.-A. Nguyên, Generalization of a theorem of Gonchar, Ark. Mat.45 (2007), 105–122. Zbl1161.31005MR2312956
- [37] P. Pflug and V.-A. Nguyên, Envelope of holomorphy for boundary cross sets, Arch. Math. (Basel) 89 (2007), 326–338. Zbl1137.32008MR2355152
- [38] E. A. Poletsky, Plurisubharmonic functions as solutions of variational problems, In: “Several Complex Variables and Complex Geometry”, Proc. Summer Res. Inst., Santa Cruz/CA (USA) 1989, Proc. Symp. Pure Math. Vol. 52, Part 1, 1991, 163–171. Zbl0739.32015MR1128523
- [39] E. A. Poletsky, Holomorphic currents, Indiana Univ. Math. J.42 (1993), 85–144. Zbl0811.32010MR1218708
- [40] T. Ransford, “Potential Theory in the Complex Plane”, London Mathematical Society Student Texts, n. 28, Cambridge: Univ. Press., 1995. Zbl0828.31001MR1334766
- [41] J. P. Rosay, Poletsky theory of disks on holomorphic manifolds, Indiana Univ. Math. J.52 (2003), 157–169. Zbl1033.31006MR1970025
- [42] B. Shiffman, Extension of holomorphic maps into Hermitian manifolds, Math. Ann.194 (1971), 249–258. Zbl0219.32007MR291507
- [43] B. Shiffman, Hartogs theorems for separately holomorphic mappings into complex spaces, C. R. Acad. Sci. Paris Sér. I Math.310 (1990), 89–94. Zbl0698.32008MR1044622
- [44] J. Siciak, Analyticity and separate analyticity of functions defined on lower dimensional subsets of , Zeszyty Nauk. Univ. Jagiellon. Prace Mat.13 (1969), 53–70. Zbl0285.32011MR247132
- [45] J. Siciak, Separately analytic functions and envelopes of holomorphy of some lower dimensional subsets of , Ann. Polon. Math.22 (1970), 145–171. Zbl0185.15202MR252675
- [46] V. P. Zahariuta, Separately analytic functions, generalizations of the Hartogs theorem and envelopes of holomorphy, Math. USSR-Sb. 30 (1976), 51–67. Zbl0381.32003
- [47] M. Zerner, Quelques résultats sur le prolongement analytique des fonctions de variables complexes, Séminaire de Physique Mathématique.
- [48] A. Zeriahi, Comportement asymptotique des systèmes doublement orthogonaux de Bergman: Une approche élémentaire, Vietnam J. Math.30 (2002), 177–188. Zbl1026.32010MR1934347
- [49] H. Wu, Normal families of holomorphic mappings, Acta Math.119 (1967), 193–233. Zbl0158.33301MR224869
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.