A general version of the Hartogs extension theorem for separately holomorphic mappings between complex analytic spaces

Viêt-Anh Nguyên[1]

  • [1] Max-Planck-Institut für Mathematik Vivatsgasse 7 D–53111 Bonn, Germany

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2005)

  • Volume: 4, Issue: 2, page 219-254
  • ISSN: 0391-173X

Abstract

top
Using recent development in Poletsky theory of discs, we prove the following result: Let X , Y be two complex manifolds, let Z be a complex analytic space which possesses the Hartogs extension property, let A (resp. B ) be a non locally pluripolar subset of X (resp. Y ). We show that every separately holomorphic mapping f : W : = ( A × Y ) ( X × B ) Z extends to a holomorphic mapping f ^ on W ^ : = ( z , w ) X × Y : ω ˜ ( z , A , X ) + ω ˜ ( w , B , Y ) < 1 such that f ^ = f on W W ^ , where ω ˜ ( · , A , X ) (resp. ω ˜ ( · , B , Y ) ) is the plurisubharmonic measure of A (resp. B ) relative to X (resp. Y ). Generalizations of this result for an N -fold cross are also given.

How to cite

top

Nguyên, Viêt-Anh. "A general version of the Hartogs extension theorem for separately holomorphic mappings between complex analytic spaces." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 4.2 (2005): 219-254. <http://eudml.org/doc/84559>.

@article{Nguyên2005,
abstract = {Using recent development in Poletsky theory of discs, we prove the following result: Let $X,$$Y$ be two complex manifolds, let $Z$ be a complex analytic space which possesses the Hartogs extension property, let $A$ (resp. $B$) be a non locally pluripolar subset of $X$ (resp. $Y$). We show that every separately holomorphic mapping $f:\ W:=(A\times Y) \cup (X\times B)\rightarrow Z$ extends to a holomorphic mapping $\hat\{f\}$ on $\widehat\{W\}:=\left\lbrace (z,w)\in X\times Y:\ \widetilde\{\omega \}(z,A,X)+\widetilde\{\omega \}(w,B,Y)&lt;1 \right\rbrace $ such that $\hat\{f\}=f$ on $W\cap \widehat\{W\},$ where $\widetilde\{\omega \}(\cdot ,A,X)$ (resp. $\widetilde\{\omega \}(\cdot ,B,Y))$ is the plurisubharmonic measure of $A$ (resp. $B$) relative to $X$ (resp. $Y$). Generalizations of this result for an $N$-fold cross are also given.},
affiliation = {Max-Planck-Institut für Mathematik Vivatsgasse 7 D–53111 Bonn, Germany},
author = {Nguyên, Viêt-Anh},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {2},
pages = {219-254},
publisher = {Scuola Normale Superiore, Pisa},
title = {A general version of the Hartogs extension theorem for separately holomorphic mappings between complex analytic spaces},
url = {http://eudml.org/doc/84559},
volume = {4},
year = {2005},
}

TY - JOUR
AU - Nguyên, Viêt-Anh
TI - A general version of the Hartogs extension theorem for separately holomorphic mappings between complex analytic spaces
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2005
PB - Scuola Normale Superiore, Pisa
VL - 4
IS - 2
SP - 219
EP - 254
AB - Using recent development in Poletsky theory of discs, we prove the following result: Let $X,$$Y$ be two complex manifolds, let $Z$ be a complex analytic space which possesses the Hartogs extension property, let $A$ (resp. $B$) be a non locally pluripolar subset of $X$ (resp. $Y$). We show that every separately holomorphic mapping $f:\ W:=(A\times Y) \cup (X\times B)\rightarrow Z$ extends to a holomorphic mapping $\hat{f}$ on $\widehat{W}:=\left\lbrace (z,w)\in X\times Y:\ \widetilde{\omega }(z,A,X)+\widetilde{\omega }(w,B,Y)&lt;1 \right\rbrace $ such that $\hat{f}=f$ on $W\cap \widehat{W},$ where $\widetilde{\omega }(\cdot ,A,X)$ (resp. $\widetilde{\omega }(\cdot ,B,Y))$ is the plurisubharmonic measure of $A$ (resp. $B$) relative to $X$ (resp. $Y$). Generalizations of this result for an $N$-fold cross are also given.
LA - eng
UR - http://eudml.org/doc/84559
ER -

References

top
  1. [1] O. Alehyane et J. M. HecartPropriété de stabilité de la fonction extrémale relative, preprint, (1999). MR2081144
  2. [2] K. Adachi, M. Suzuki and M. Yoshida, Continuation of holomorphic mappings with values in a complex Lie group, Pacific J. Math. 47 (1973), 1–4. Zbl0237.32008MR352526
  3. [3] O. Alehyane et A. Zeriahi, Une nouvelle version du théorème d’extension de Hartogs pour les applications séparément holomorphes entre espaces analytiques, Ann. Polon. Math. 76 (2001), 245–278. Zbl0979.32011MR1841529
  4. [4] E. Bedford, The operator ( d d c ) n on complex spaces, Semin. P. Lelong - H. Skoda, Analyse, Années 1980/81, Lect. Notes Math. 919 (1982), 294–323. Zbl0479.32006MR658889
  5. [5] E. Bedford and B. A. Taylor, A new capacity for plurisubharmonic functions, Acta Math. 149 (1982), 1–40. Zbl0547.32012MR674165
  6. [6] A. Edigarian, Analytic discs method in complex analysis, Dissertationes Math. 402 (2002). Zbl0993.31003MR1897580
  7. [7] A. Edigarian and E. A. Poletsky, Product property of the relative extremal function, Bull. Polish Acad. Sci. Math. 45 (1997), 331–335. Zbl0898.32010MR1489875
  8. [8] F. Hartogs, Zur Theorie der analytischen Funktionen mehrer unabhängiger Veränder- lichen, insbesondere über die Darstellung derselben durch Reihen, welche nach Potenzen einer Veränderlichen fortschreiten, Math. Ann. 62 (1906), 1–88. Zbl37.0444.01MR1511365JFM37.0444.01
  9. [9] B. Josefson, On the equivalence between polar and globally polar sets for plurisubharmonic functions on n , Ark. Mat. 16 (1978), 109–115. Zbl0383.31003MR590078
  10. [10] S. M. Ivashkovich, The Hartogs phenomenon for holomorphically convex Kähler manifolds, Math. USSR-Izv. 29 (1997), 225–232. Zbl0618.32011
  11. [11] M. Jarnicki and P. Pflug, “Extension of Holomorphic Functions”, de Gruyter Expositions in Mathematics 34, Walter de Gruyter, 2000. Zbl0976.32007MR1797263
  12. [12] M. Jarnicki and P. Pflug, An extension theorem for separately holomorphic functions with analytic singularities, Ann. Polon Math. 80 (2003), 143–161. Zbl1023.32001MR1972841
  13. [13] M. Jarnicki and P. Pflug, An extension theorem for separately holomorphic functions with pluripolar singularities, Trans. Amer. Math. Soc. 355 (2003), 1251–1267. Zbl1012.32002MR1938756
  14. [14] M. Jarnicki and P. Pflug, An extension theorem for separately meromorphic functions with pluripolar singularities, Kyushu J. of Math., 57 (2003), 291–302. Zbl1055.32002MR2050087
  15. [15] M. Klimek, “Pluripotential theory”, London Mathematical society monographs, Oxford Univ. Press., 6, 1991. Zbl0742.31001MR1150978
  16. [16] N. V. Khue and N. H. Thanh, Locally bounded holomorphic functions and the mixed Hartogs theorem, Southeast Asian Bull. Math. 23 (1999), 643–655. Zbl0948.32003MR1810829
  17. [17] F. Lárusson and R. Sigurdsson, Plurisubharmonic functions and analytic discs on manifolds, J. Reine Angew. Math. 501 (1998), 1–39. Zbl0901.31004MR1637837
  18. [18] Nguyên Thanh Vân, Separate analyticity and related subjects, Vietnam J. Math. 25 (1997), 81–90. Zbl0898.32002MR1681531
  19. [19] Nguyên Thanh Vân, Note on doubly orthogonal system of Bergman, In: “Linear Topological Spaces and Complex Analysis” 3 (1997), 157–159. Zbl0910.46009MR1632495
  20. [20] Ph. Noverraz, Fonctions plurisousharmoniques et analytiques dans les espaces vectoriels topologiques, Ann. Inst. Fourier Grenoble 19 (1969), 419–493. Zbl0176.09903MR265628
  21. [21] Nguyên Thanh Vân and J. Siciak, Fonctions plurisousharmoniques extrémales et systèmes doublement orthogonaux de fonctions analytiques, Bull. Sci. Math. 115 (1991), 235–244. Zbl0810.32011MR1101026
  22. [22] Nguyên Thanh Vân et A. Zeriahi, Familles de polynômes presque partout bornées, Bull. Sci. Math. 107 (1983), 81–89. Zbl0523.32011MR699992
  23. [23] Nguyên Thanh Vân et A. Zeriahi, Une extension du théorème de Hartogs sur les fonctions séparément analytiques, In: “Analyse Complexe Multivariable, Récents Développements”, A. Meril (ed.), EditEl, Rende, 1991, 183–194. Zbl0918.32001MR1228880
  24. [24] Nguyên Thanh Vân et A. Zeriahi, Systèmes doublement orthogonaux de fonctions holomorphes et applications, Banach Center Publ. 31, Inst. Math., Polish Acad. Sci. (1995), 281–297. Zbl0844.31003MR1341397
  25. [25] P. Pflug, Extension of separately holomorphic functions–a survey 1899–2001, Ann. Polon. Math. 80 (2003), 21–36. Zbl1023.32002MR1972831
  26. [26] E. A. Poletsky, Plurisubharmonic functions as solutions of variational problems, In: “Several complex variables and complex geometry”, Proc. Summer Res. Inst., Santa Cruz/CA (USA) 1989, Proc. Symp. Pure Math. 52, Part 1 (1991), 163–171. Zbl0739.32015MR1128523
  27. [27] E. A. Poletsky, Holomorphic currents, Indiana Univ. Math. J. 42 (1993), 85–144. Zbl0811.32010MR1218708
  28. [28] P. Pflug and V.-A. Nguyên, A boundary cross theorem for separately holomorphic functions, Ann. Polon. Math. 84 (2004), 237–271. Zbl1068.32010MR2110930
  29. [29] P. Pflug and V.-A. Nguyên, Generalization of Drużkowski’s and Gonchar’s “Edge-of-the-Wedge” Theorems, preprint 2004, available at arXiv:math.CV/0503326. 
  30. [30] P. Pflug and V.-A. Nguyên, Envelope of holomorphy for boundary cross sets, preprint 2005. Zbl1137.32008MR2355152
  31. [31] T. Ransford, “Potential theory in the complex plane”, London Mathematical Society Student Texts 28, Cambridge: Univ. Press., 1995. Zbl0828.31001MR1334766
  32. [32] J. P. Rosay, Poletsky theory of disks on holomorphic manifolds, Indiana Univ. Math. J. 52 (2003), 157–169. Zbl1033.31006MR1970025
  33. [33] A. Sadullaev, Plurisubharmonic measures and capacities on complex manifolds, Russian Math. Surveys 36 (1981), 61–119. Zbl0494.31005MR629683
  34. [34] B. Shiffman, Extension of holomorphic maps into Hermitian manifolds, Math. Ann. 194 (1971), 249–258. Zbl0219.32007MR291507
  35. [35] I. Shimoda, Notes on the functions of two complex variables, J. Gakugei Tokushima Univ. 8 (1957), 1–3. Zbl0083.07003MR98844
  36. [36] J. Siciak, Analyticity and separate analyticity of functions defined on lower dimensional subsets of n , Zeszyty Nauk. Univ. Jagiello. Prace Mat. Zeszyt 13 (1969), 53–70. Zbl0285.32011MR247132
  37. [37] J. Siciak, Separately analytic functions and envelopes of holomorphy of some lower dimensional subsets of n , Ann. Polon. Math. 22 (1970), 145–171. Zbl0185.15202MR252675
  38. [38] T. Terada, Sur une certaine condition sous laquelle une fonction de plusieurs variables complexes est holomorphe, Publ. Res. Inst. Math. Sci. 2 (1967), 383–396. Zbl0183.34903MR240334
  39. [39] V. P. Zahariuta, Separately analytic functions, generalizations of the Hartogs theorem and envelopes of holomorphy, Math. USSR-Sb. 30 (1976), 51–67. Zbl0381.32003
  40. [40] A. Zeriahi, Comportement asymptotique des systèmes doublement orthogonaux de Bergman: Une approche élémentaire, Vietnam J. Math. 30 (2002), 177–188. Zbl1026.32010MR1934347
  41. [41] H. Wu, Normal families of holomorphic mappings, Acta Math. 119 (1967), 193–233. Zbl0158.33301MR224869

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.