A priori estimates for weak solutions of complex Monge-Ampère equations

Slimane Benelkourchi; Vincent Guedj; Ahmed Zeriahi

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2008)

  • Volume: 7, Issue: 1, page 81-96
  • ISSN: 0391-173X

Abstract

top
Let X be a compact Kähler manifold and ω be a smooth closed form of bidegree ( 1 , 1 ) which is nonnegative and big. We study the classes χ ( X , ω ) of ω -plurisubharmonic functions of finite weighted Monge-Ampère energy. When the weight χ has fast growth at infinity, the corresponding functions are close to be bounded. We show that if a positive Radon measure is suitably dominated by the Monge-Ampère capacity, then it belongs to the range of the Monge-Ampère operator on some class χ ( X , ω ) . This is done by establishing a priori estimates on the capacity of sublevel sets of the solutions. Our result extends those of U. Cegrell’s and S. Kolodziej’s and puts them into a unifying frame. It also gives a simple proof of S. T. Yau’s celebrated a priori 𝒞 0 -estimate.

How to cite

top

Benelkourchi, Slimane, Guedj, Vincent, and Zeriahi, Ahmed. "A priori estimates for weak solutions of complex Monge-Ampère equations." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 7.1 (2008): 81-96. <http://eudml.org/doc/272282>.

@article{Benelkourchi2008,
abstract = {Let $X$ be a compact Kähler manifold and $\omega $ be a smooth closed form of bidegree $(1,1)$ which is nonnegative and big. We study the classes $\{\mathcal \{E\}\}_\{\chi \}(X,\omega )$ of $\omega $-plurisubharmonic functions of finite weighted Monge-Ampère energy. When the weight $\chi $ has fast growth at infinity, the corresponding functions are close to be bounded. We show that if a positive Radon measure is suitably dominated by the Monge-Ampère capacity, then it belongs to the range of the Monge-Ampère operator on some class $\{\mathcal \{E\}\}_\{\chi \}(X,\omega )$. This is done by establishing a priori estimates on the capacity of sublevel sets of the solutions. Our result extends those of U. Cegrell’s and S. Kolodziej’s and puts them into a unifying frame. It also gives a simple proof of S. T. Yau’s celebrated a priori $\{\mathcal \{C\}\}^0$-estimate.},
author = {Benelkourchi, Slimane, Guedj, Vincent, Zeriahi, Ahmed},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {1},
pages = {81-96},
publisher = {Scuola Normale Superiore, Pisa},
title = {A priori estimates for weak solutions of complex Monge-Ampère equations},
url = {http://eudml.org/doc/272282},
volume = {7},
year = {2008},
}

TY - JOUR
AU - Benelkourchi, Slimane
AU - Guedj, Vincent
AU - Zeriahi, Ahmed
TI - A priori estimates for weak solutions of complex Monge-Ampère equations
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2008
PB - Scuola Normale Superiore, Pisa
VL - 7
IS - 1
SP - 81
EP - 96
AB - Let $X$ be a compact Kähler manifold and $\omega $ be a smooth closed form of bidegree $(1,1)$ which is nonnegative and big. We study the classes ${\mathcal {E}}_{\chi }(X,\omega )$ of $\omega $-plurisubharmonic functions of finite weighted Monge-Ampère energy. When the weight $\chi $ has fast growth at infinity, the corresponding functions are close to be bounded. We show that if a positive Radon measure is suitably dominated by the Monge-Ampère capacity, then it belongs to the range of the Monge-Ampère operator on some class ${\mathcal {E}}_{\chi }(X,\omega )$. This is done by establishing a priori estimates on the capacity of sublevel sets of the solutions. Our result extends those of U. Cegrell’s and S. Kolodziej’s and puts them into a unifying frame. It also gives a simple proof of S. T. Yau’s celebrated a priori ${\mathcal {C}}^0$-estimate.
LA - eng
UR - http://eudml.org/doc/272282
ER -

References

top
  1. [1] H. Alexander and B. A. Taylor, Comparison of two capacities in n , Math. Z.186 (1984), 407–417. Zbl0576.32029MR744831
  2. [2] T. Aubin, Équations du type Monge-Ampère sur les variétés Kählériennes compactes, Bull. Sci. Math. (2) 102 (1978), 63–95. Zbl0374.53022MR494932
  3. [3] E. Bedford and B. A. TaylorA new capacity for plurisubharmonic functions, Acta Math.149 (1982), 1–40. Zbl0547.32012MR674165
  4. [4] Z. Blocki, On uniform estimate in Calabi-Yau theorem, Sci. China Ser. A 48 (2005) , suppl., 244–247. Zbl1128.32025MR2156505
  5. [5] G. Burgos, J. Kramer and U. Kuhn, Arithmetic characteristic classes of automorphic vector bundles, Doc. Math.10 (2005), 619–716. Zbl1080.14028MR2218402
  6. [6] E. Calabi, On Kähler manifolds with vanishing canonical class. Algebraic geometry and topology, In: “A symposium in Honor of S. Lefschetz”, Princeton Univ. Press, Princeton, N. J. (1957), 78–89. Zbl0080.15002MR85583
  7. [7] U. Cegrell, Pluricomplex energy, Acta Math.180 (1998), 187–217. Zbl0926.32042MR1638768
  8. [8] P. Eyssidieux, V. Guedj and A. Zeriahi, Singular Kähler-Einstein metrics, preprint arxiv math. AG/0603431. Zbl1215.32017
  9. [9] V. Guedj and A. Zeriahi, Intrinsic capacities on compact Kähler manifolds, J. Geom. Anal.15 (2005), 607–639. Zbl1087.32020MR2203165
  10. [10] V. Guedj and A. Zeriahi, The weighted Monge-Ampère energy of quasiplurisubharmonic functions, J. Funct. Anal.250 (2007), 442–482. Zbl1143.32022MR2352488
  11. [11] S. Kolodziej, The range of the complex Monge-Ampère operator, Indiana Univ. Math. J.43 (1994), 1321–1338. Zbl0831.31009MR1322621
  12. [12] S. Kolodziej, The complex Monge-Ampère equation, Acta Math.180 (1998), 69–117. Zbl0913.35043MR1618325
  13. [13] S. Kolodziej, The Monge-Ampère equation on compact Kähler manifolds, Indiana Univ. Math. J.52 (2003), 667–686. Zbl1039.32050MR1986892
  14. [14] S. Kolodziej, “The Complex Monge-Ampère Equation and Pluripotential Theory”, Mem. Amer. Math. Soc., Vol. 178, 2005. Zbl1084.32027MR2172891
  15. [15] U. Kuhn, Generalized arithmetic intersection numbers, J. Reine Angew. Math.534 (2001), 209–236. Zbl1084.14028MR1831639
  16. [16] J. Rainwater, A note on the preceding paper, Duke Math. J.36 (1969), 799–800. Zbl0201.45801MR290114
  17. [17] T. Ransford, “Potential Theory in the Complex Plane”, London Mathematical Society Student Texts, Vol. 28, Cambridge University Press, Cambridge, 1995. Zbl0828.31001MR1334766
  18. [18] G. Tian, “Canonical Metrics in Kähler Geometry”, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2000. Zbl0978.53002MR1787650
  19. [19] S. T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I. Comm. Pure Appl. Math.31 (1978), 339–411. Zbl0369.53059MR480350
  20. [20] A. Zeriahi, Volume and capacity of sublevel sets of a Lelong class of psh functions, Indiana Univ. Math. J.50 (2001), 671–703. Zbl1138.31302MR1857051

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.