A priori estimates for weak solutions of complex Monge-Ampère equations
Slimane Benelkourchi; Vincent Guedj; Ahmed Zeriahi
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2008)
- Volume: 7, Issue: 1, page 81-96
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topBenelkourchi, Slimane, Guedj, Vincent, and Zeriahi, Ahmed. "A priori estimates for weak solutions of complex Monge-Ampère equations." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 7.1 (2008): 81-96. <http://eudml.org/doc/272282>.
@article{Benelkourchi2008,
abstract = {Let $X$ be a compact Kähler manifold and $\omega $ be a smooth closed form of bidegree $(1,1)$ which is nonnegative and big. We study the classes $\{\mathcal \{E\}\}_\{\chi \}(X,\omega )$ of $\omega $-plurisubharmonic functions of finite weighted Monge-Ampère energy. When the weight $\chi $ has fast growth at infinity, the corresponding functions are close to be bounded.
We show that if a positive Radon measure is suitably dominated by the Monge-Ampère capacity, then it belongs to the range of the Monge-Ampère operator on some class $\{\mathcal \{E\}\}_\{\chi \}(X,\omega )$. This is done by establishing a priori estimates on the capacity of sublevel sets of the solutions.
Our result extends those of U. Cegrell’s and S. Kolodziej’s and puts them into a unifying frame. It also gives a simple proof of S. T. Yau’s celebrated a priori $\{\mathcal \{C\}\}^0$-estimate.},
author = {Benelkourchi, Slimane, Guedj, Vincent, Zeriahi, Ahmed},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {1},
pages = {81-96},
publisher = {Scuola Normale Superiore, Pisa},
title = {A priori estimates for weak solutions of complex Monge-Ampère equations},
url = {http://eudml.org/doc/272282},
volume = {7},
year = {2008},
}
TY - JOUR
AU - Benelkourchi, Slimane
AU - Guedj, Vincent
AU - Zeriahi, Ahmed
TI - A priori estimates for weak solutions of complex Monge-Ampère equations
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2008
PB - Scuola Normale Superiore, Pisa
VL - 7
IS - 1
SP - 81
EP - 96
AB - Let $X$ be a compact Kähler manifold and $\omega $ be a smooth closed form of bidegree $(1,1)$ which is nonnegative and big. We study the classes ${\mathcal {E}}_{\chi }(X,\omega )$ of $\omega $-plurisubharmonic functions of finite weighted Monge-Ampère energy. When the weight $\chi $ has fast growth at infinity, the corresponding functions are close to be bounded.
We show that if a positive Radon measure is suitably dominated by the Monge-Ampère capacity, then it belongs to the range of the Monge-Ampère operator on some class ${\mathcal {E}}_{\chi }(X,\omega )$. This is done by establishing a priori estimates on the capacity of sublevel sets of the solutions.
Our result extends those of U. Cegrell’s and S. Kolodziej’s and puts them into a unifying frame. It also gives a simple proof of S. T. Yau’s celebrated a priori ${\mathcal {C}}^0$-estimate.
LA - eng
UR - http://eudml.org/doc/272282
ER -
References
top- [1] H. Alexander and B. A. Taylor, Comparison of two capacities in , Math. Z.186 (1984), 407–417. Zbl0576.32029MR744831
- [2] T. Aubin, Équations du type Monge-Ampère sur les variétés Kählériennes compactes, Bull. Sci. Math. (2) 102 (1978), 63–95. Zbl0374.53022MR494932
- [3] E. Bedford and B. A. TaylorA new capacity for plurisubharmonic functions, Acta Math.149 (1982), 1–40. Zbl0547.32012MR674165
- [4] Z. Blocki, On uniform estimate in Calabi-Yau theorem, Sci. China Ser. A 48 (2005) , suppl., 244–247. Zbl1128.32025MR2156505
- [5] G. Burgos, J. Kramer and U. Kuhn, Arithmetic characteristic classes of automorphic vector bundles, Doc. Math.10 (2005), 619–716. Zbl1080.14028MR2218402
- [6] E. Calabi, On Kähler manifolds with vanishing canonical class. Algebraic geometry and topology, In: “A symposium in Honor of S. Lefschetz”, Princeton Univ. Press, Princeton, N. J. (1957), 78–89. Zbl0080.15002MR85583
- [7] U. Cegrell, Pluricomplex energy, Acta Math.180 (1998), 187–217. Zbl0926.32042MR1638768
- [8] P. Eyssidieux, V. Guedj and A. Zeriahi, Singular Kähler-Einstein metrics, preprint arxiv math. AG/0603431. Zbl1215.32017
- [9] V. Guedj and A. Zeriahi, Intrinsic capacities on compact Kähler manifolds, J. Geom. Anal.15 (2005), 607–639. Zbl1087.32020MR2203165
- [10] V. Guedj and A. Zeriahi, The weighted Monge-Ampère energy of quasiplurisubharmonic functions, J. Funct. Anal.250 (2007), 442–482. Zbl1143.32022MR2352488
- [11] S. Kolodziej, The range of the complex Monge-Ampère operator, Indiana Univ. Math. J.43 (1994), 1321–1338. Zbl0831.31009MR1322621
- [12] S. Kolodziej, The complex Monge-Ampère equation, Acta Math.180 (1998), 69–117. Zbl0913.35043MR1618325
- [13] S. Kolodziej, The Monge-Ampère equation on compact Kähler manifolds, Indiana Univ. Math. J.52 (2003), 667–686. Zbl1039.32050MR1986892
- [14] S. Kolodziej, “The Complex Monge-Ampère Equation and Pluripotential Theory”, Mem. Amer. Math. Soc., Vol. 178, 2005. Zbl1084.32027MR2172891
- [15] U. Kuhn, Generalized arithmetic intersection numbers, J. Reine Angew. Math.534 (2001), 209–236. Zbl1084.14028MR1831639
- [16] J. Rainwater, A note on the preceding paper, Duke Math. J.36 (1969), 799–800. Zbl0201.45801MR290114
- [17] T. Ransford, “Potential Theory in the Complex Plane”, London Mathematical Society Student Texts, Vol. 28, Cambridge University Press, Cambridge, 1995. Zbl0828.31001MR1334766
- [18] G. Tian, “Canonical Metrics in Kähler Geometry”, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2000. Zbl0978.53002MR1787650
- [19] S. T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I. Comm. Pure Appl. Math.31 (1978), 339–411. Zbl0369.53059MR480350
- [20] A. Zeriahi, Volume and capacity of sublevel sets of a Lelong class of psh functions, Indiana Univ. Math. J.50 (2001), 671–703. Zbl1138.31302MR1857051
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.