A viscosity approach to degenerate complex Monge-Ampère equations
Annales de la faculté des sciences de Toulouse Mathématiques (2013)
- Volume: 22, Issue: 4, page 843-913
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topReferences
top- Alexandrov (A.D.).— Almost everywhere existence of the second order differential of a convex function and some properties of convex functions, Leningrad. Univ. Ann. (Math. Ser.) 37, p. 3-35 (1939). (Russian)
- Aubin (T.).— Equation de type Monge-Ampère sur les variétés kählériennes compactes. Bull. Sci. Math. 102, p. 63-95 (1978). Zbl0374.53022MR494932
- Azagra (D.), Ferrara (D.), Sanz (B.).— Viscosity Solutions to second order partial differential equations on Riemannian manifolds J. Diff. Equations (2008). Zbl1235.49058
- Barles (G.).— Solutions de Viscosité et Équations Elliptiques du Deuxième ordre, Notes de cours, Université de Tours, Septembre 97.
- Bedford (E.).— Survey of pluri-potential theory. Several complex variables (Mittag-Leffler, Stockholm, 1987/1988), 4897, Math. Notes, 38, Princeton Univ. Press, Princeton, NJ, (1993). Zbl0786.31001MR1207855
- Berman (R.).— Bergman kernels and equilibrium measures for line bundles over projective manifolds, Amer. J. Math. 131, no. 5, p. 1485-1524 (2009). Zbl1191.32008MR2559862
- Blocki (Z.).— Uniqueness and stability for the complex Monge-Ampère equation on compact Khler manifolds, Indiana Univ. Math. J. 52, no. 6, p. 1697-1701 (2003). Zbl1054.32024MR2021054
- Blocki (Z.).— On the definition of the Monge-Ampère operator in , Math. Ann. 328, no. 3, p. 415-423 (2004). Zbl1060.32018MR2036329
- Blocki (Z.).— The domain of definition of the complex Monge-Ampère operator, Amer. J. Math. 128, no. 2, p. 519-530 (2006). Zbl1102.32018MR2214901
- Blocki (Z.).— The Calabi-Yau theorem. Complex Monge-Ampère equations and geodesics in the space of Kähler metrics, Lecture Notes in Math., 2038, Springer, Heidelberg (2012). Zbl1231.32017MR2932444
- Berman (R.), Demailly (J.-P.).— Regularity of plurisubharmonic upper envelopes in big cohomology classes, Perspectives in analysis, geometry, and topology, p. 39-66, Progr. Math., 296, Birkhuser/Springer, New York (2012). Zbl1258.32010MR2884031
- Bedford (E.), Taylor (B.A.).— The Dirichlet problem for a complex Monge-Ampère equation, Invent. Math. 37, no. 1, p. 1-44 (1976). Zbl0315.31007MR445006
- Bedford (E.), Taylor (B.A.).— A new capacity for plurisubharmonic functions. Acta Math. 149, p. 1-40 (1982). Zbl0547.32012MR674165
- Bedford (E.), Taylor (B.A.).— Fine topology, Šilov boundary, and , J. Funct. Anal. 72, no. 2, p. 225-251 (1987). Zbl0677.31005MR886812
- Bedford (E.), Taylor (B.A.).— Plurisubharmonic functions with logarithmic singularities, Ann. Inst. Fourier (Grenoble) 38, no. 4, p. 133-171 (1988). Zbl0626.32022MR978244
- Bedford (E.), Taylor (B.A.).— Uniqueness for the complex Monge-Ampère equation for functions of logarithmic growth, Indiana Univ. Math. J. 38, no. 2, p. 455-469 (1989). Zbl0677.32002MR997391
- Benelkourchi (S.), Guedj (V.), Zeriahi (A.).— A priori estimates for weak solutions of complex Monge-Ampère equations, Ann. Scuola Norm. Sup. Pisa C1. Sci. (5), Vol VII, p. 1-16 (2008). Zbl1150.32011
- Benelkourchi (S.), Guedj (V.), Zeriahi (A.).— Plurisubharmonic functions with weak singularities. Complex Analysis and Digital Geometry, Proceedings from the Kiselmanfest 2006, Acta Universitatis Upsaliensis, Vol. 88 (2009). Zbl1200.32021MR2742673
- Berman (R.), Boucksom (S.), Guedj (V.), Zeriahi (A.).— A variational approach to complex Monge Ampère equations. Publ. Math. I.H.E.S. 117, p. 179-245. (2013) Zbl1277.32049MR3090260
- Birkar (C.), Cascini (P.), Hacon (C.D.), McKernan (J.).— Existence of minimal models for varieties of log general type. J. Amer. Math. Soc. 23, no. 2, p. 405-468 (2010). Zbl1210.14019MR2601039
- Boucksom (S.), Eyssidieux (P.), Guedj (V.), Zeriahi (A.).— Monge Ampère equations in big cohomology classes, Acta Mathematica 205, p. 199-262 (2010). Zbl1213.32025MR2746347
- Berman (R.), Boucksom (S.), Guedj (V.), Zeriahi (A.).— Kähler-Einstein metrics and the Kähler-Ricci flow on log Fano varieties. Preprint, arXiv:1111.7158, p. 1-50.
- Calabi (E.).— On Kähler manifolds with vanishing canonical class. Algebraic geometry and topology. A symposium in honor of S. Lefschetz, p. 78-89. Princeton University Press, Princeton, N. J. (1957). Zbl0080.15002MR85583
- Cardaliaguet (P.).— Solutions de viscosité d’équations elliptiques et paraboloiques non linéaires, Notes de Cours, Université de Rennes, Janvier 2004.
- Cascini (P.), La Nave (G.).— Kähler-Ricci Flow and the Minimal Model Program for Projective Varieties. Preprint arXiv math.AG/0603064.
- Cegrell (U.).— On the Dirichlet problem for the complex Monge-Ampère operator, Math. Z. 185, no. 2, p. 247-251 (1984). Zbl0539.35001MR731345
- Cegrell (U.).— Pluricomplex energy. Acta Math. 180, no. 2, p. 187-217 (1998). Zbl0926.32042MR1638768
- Cegrell (U.).— The general definition of the complex Monge-Ampère operator Ann. Inst. Fourier 54, p. 159-179 (2004). Zbl1065.32020MR2069125
- Chinh Lu (H.).— Viscosity solutions to complex Hessian equations. Preprint arXiv:1209.5343 MR3017267
- Caffarelli (L.A.), Cabré (X.).— Fully Nonlinear Elliptic Equations. American Mathematical Society Colloqium publications, Vol. 43 (1995). Zbl0834.35002MR1351007
- Caffarelli (L.A.), Kohn (J.-J.), Nirenberg (L.), Spruck (J.).— The Dirichlet problem for nonlinear second-order elliptic equations, II, Complex Monge-Amère and uniformly elliptic equations, Comm. Pure Appl. Math. 38, no. 2, p. 209-252 (1985). Zbl0598.35048MR780073
- Crandall (M.), Lions (P.L.).— Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 277, p. 1-42 (1983). Zbl0599.35024MR690039
- Crandall (M.), Ishii (H.), Lions (P.L.).— User’s guide to viscosity solutions of second order partial differential equations Bull. Amer. Math. Soc. 27, p. 1-67 (1992). Zbl0755.35015MR1118699
- Demailly (J.P.).— Complex analytic and algebraic geometry. Book available at http://www-fourier.ujf-grenoble.fr/~demailly/books.html Zbl1102.14300
- Demailly (J.P.).— Potential theory in several complex variables, Manuscript available at http://www-fourier.ujf-grenoble.fr/~demailly/.
- Demailly (J.P.).— Regularization of closed positive currents and intersection theory. J. Algebraic Geom. 1, no. 3, p. 361-409 (1992). Zbl0777.32016MR1158622
- Demailly (J.P.), Dinew (S.), Guedj (V.), Hiep Pham (H.), Kolodziej (S.), Zeriahi (A.).— Hölder continuous solutions to Monge-Ampère equations. arXiv.— 1112.1388 (to appear in JEMS 2012) Zbl1296.32012
- Demailly (J.P.), Pali (N.).— Degenerate complex Monge-Ampère equations over compact Kähler manifolds Int. J. Math. 21, no.3, p. 357-405 (2010). Zbl1191.53029MR2647006
- Droniou (J.), Imbert (C.).— Solutions et solutions variationnelles pour EDP non lineaire, Cours polycopié, Université de Montpellier (2004).
- Eyssidieux (P.), Guedj (V.), Zeriahi (A.).— A priori -estimate for degenerate complex Monge-Ampère equations. International Mathematical Research Notes, Vol. 2008, Article ID rnn070, 8 pages. Zbl1162.32020
- Eyssidieux (P.), Guedj (V.), Zeriahi (A.).— Singular Kähler-Einstein metrics J. Amer. Math. Soc. 22, p. 607-639 (2009). Zbl1215.32017MR2505296
- Eyssidieux (P.), Guedj (V.), Zeriahi (A.).— Viscosity solutions to Degenerate Complex Monge-Ampère Equations, Comm. Pure Appl. Math. 64, no. 8, p. 1059-1094 (2011). Zbl1227.32042MR2839271
- Gaveau (B.).— Méthodes de contrôle optimal en analyse complexe. I. Résolution d’équations de Monge-Ampère, J. Funct. Anal. 25, p. 391-411 (1977). Zbl0356.35071MR457783
- Gilbarg (D.), Trudinger (N.S.).— Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer-Verlag (1983). Zbl0361.35003MR737190
- Guedj (V.), Zeriahi (A.).— Intrinsic capacities on compact Kähler manifolds. J. Geom. Anal. 15, no. 4, p. 607-639 (2005). Zbl1087.32020MR2203165
- Guedj (V.), Zeriahi (A.).— The weighted Monge-Ampère energy of quasiplurisubharmonic functions, J. Funct. An. 250, p. 442-482 (2007). Zbl1143.32022MR2352488
- Guedj (V.), Zeriahi (A.).— A. Stability of solutions to complex Monge-Ampère equations in big cohomology classes. Math. Res. Lett. 19, no. 05, p. 1025-1042 (2012). Zbl1273.32040MR3039828
- Harvey (F.R.), Lawson (H.B.).— Dirichlet duality and the nonlinear Dirichlet problem, Comm. Pure Appl. Math. 62, no. 3, p. 396-443 (2009). Zbl1173.35062MR2487853
- Harvey (F.R.), Lawson (H.B.).— Dirichlet duality and the nonlinear Dirichlet problem on Riemannian manifolds, J. Differential Geometry 88, no. 3, p. 395-482 (2011). Zbl1235.53042MR2844439
- Harvey (F.R.), Lawson (H.B.).— Potential Theory on almost complex manifolds, Preprint 2013, arXiv:1107.2584 (to appear in Ann. Inst. Fourier). Zbl06496537
- Hörmander (L.).— Notions of convexity, Progress in Math., Birkhäuser (1994). Zbl0835.32001MR1301332
- Ishii (H.).— On uniqueness and existence of viscosity solutions of fully nonlinear second-order elliptic PDEs, Comm. Pure Appl. Math. 42, no. 1, p. 15-45 (1989). Zbl0645.35025MR973743
- Ishii (H.), Lions (P.L.).— Viscosity solutions of fully nonlinear second-order elliptic partial differential equations, Journ. Diff. Equations 83, p. 26-78 (1990). Zbl0708.35031MR1031377
- Jensen (R.).— The maximum principle for viscosity solutions of fully nonlinear second-order partial differential equations, Arch. Rat. Mech. Anal. 101, p. 1-27 (1988). Zbl0708.35019MR920674
- Kiselman (C.O.).— Plurisubharmonic functions and potential theory in several complex variables, Development of mathematics 1950-2000, 655-714, Birkhäuser, Basel (2000). Zbl0962.31001MR1796855
- Klimek (M.).— Pluripotential theory, London Mathematical Society Monographs. New Series, 6. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1991. Zbl0742.31001MR1150978
- Kołodziej (S.).— The range of the complex Monge-Ampere operator II. Indiana Univ. Math. J. 44 No. 3, p. 765-782 (1995). Zbl0849.31009MR1375348
- Kołodziej (S.).— The complex Monge-Ampère equation. Acta Math. 180, no. 1, p. 69-117 (1998). Zbl0913.35043MR1618325
- Kołodziej (S.).— The complex Monge-Ampère equation and pluripotential theory, Mem. Amer. Math. Soc. 178, no. 840 (2005). Zbl1084.32027
- Kołodziej (S.).— The Monge-Ampère equation on compact Kähler manifolds, Indiana Univ. Math. J. 52, no. 3, p. 667-686 (2003). Zbl1039.32050MR1986892
- Kołodziej (S.).— Hölder continuity of solutions to the complex Monge-Ampère equation with the right-hand side in : the case of compact Kähler manifolds, Math. Ann. 342, no. 2, p. 379-386 (2008). Zbl1149.32018MR2425147
- Kołodziej (S.), Tian (G.).— A uniform -estimate for complex Monge-Ampère equations, Math. Ann. 342, no. 4, p. 773-787 (2008). Zbl1159.32022MR2443763
- Lelong (P.).— Fonctions plurisousharmoniques et formes diffrentielles positives, (French) Gordon and Breach, Paris-London-New York (Distributed by Dunod éditeur, Paris) 1968 ix+79 p. Zbl0192.20103MR243112
- Phong (D. H.), Sturm (J.).— The Dirichlet problem for degenerate complex Monge-Ampere equations, Comm. Anal. Geom. 18, no. 1, p. 145-170 (2010). Zbl1222.32044MR2660461
- Phong (D. H.), Song (J.), Sturm (J.).— Complex Monge Ampere Equations, Surveys in Differential Geomety, vol. 17, p. 327-411 (2012). Zbl06322503
- Tian (G.).— Canonical metrics in Kähler geometry, Lectures in Mathematics, ETH Zürich, Birkhäuser Verlag, Basel, 2000. vi+101 p. ISBN:3-7643-6194-8. Zbl0978.53002MR1787650
- Walsh (J.B.).— Continuity of envelopes of plurisubharmonic functions, J. Math. Mech. 18, p. 143-148 (1968). Zbl0159.16002MR227465
- Wang (Y.).— A Viscosity Approach to the Dirichlet Problem for Complex Monge-Ampère Equations. Preprint, arXiv:1010.1292. Zbl1267.32040MR2968239
- Wiklund (J.).— Matrix inequalities and the complex Monge-Ampère operator, Ann. Polon. Math. 83, p. 211-220 (2004). Zbl1104.32013MR2111708
- Yau (S.T.).— On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, Comm. Pure Appl. Math. 31, p. 339-441 (1978). Zbl0369.53059MR480350
- Zhang (Z.).— On On degenerate complex Monge-Ampère equations over closed Kähler manifolds. Int. Math. Res. Not. (2006), Art. ID 63640, 18p. Zbl1112.32021MR2233716