Lie description of higher obstructions to deforming submanifolds
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2007)
- Volume: 6, Issue: 4, page 631-659
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topManetti, Marco. "Lie description of higher obstructions to deforming submanifolds." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 6.4 (2007): 631-659. <http://eudml.org/doc/272283>.
@article{Manetti2007,
abstract = {To every morphism $\chi \colon L\rightarrow M$ of differential graded Lie algebras we associate a functors of artin rings $\operatorname\{Def\}_\chi $ whose tangent and obstruction spaces are respectively the first and second cohomology group of the suspension of the mapping cone of $\chi $.
Such construction applies to Hilbert and Brill-Noether functors and allow to prove with ease that every higher obstruction to deforming a smooth submanifold of a Kähler manifold is annihilated by the semiregularity map.},
author = {Manetti, Marco},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {differential graded Lie algebras; deformation functor; tangent and obstruction spaces; compact Kähler manifolds},
language = {eng},
number = {4},
pages = {631-659},
publisher = {Scuola Normale Superiore, Pisa},
title = {Lie description of higher obstructions to deforming submanifolds},
url = {http://eudml.org/doc/272283},
volume = {6},
year = {2007},
}
TY - JOUR
AU - Manetti, Marco
TI - Lie description of higher obstructions to deforming submanifolds
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2007
PB - Scuola Normale Superiore, Pisa
VL - 6
IS - 4
SP - 631
EP - 659
AB - To every morphism $\chi \colon L\rightarrow M$ of differential graded Lie algebras we associate a functors of artin rings $\operatorname{Def}_\chi $ whose tangent and obstruction spaces are respectively the first and second cohomology group of the suspension of the mapping cone of $\chi $.
Such construction applies to Hilbert and Brill-Noether functors and allow to prove with ease that every higher obstruction to deforming a smooth submanifold of a Kähler manifold is annihilated by the semiregularity map.
LA - eng
KW - differential graded Lie algebras; deformation functor; tangent and obstruction spaces; compact Kähler manifolds
UR - http://eudml.org/doc/272283
ER -
References
top- [1] M. Artin, “Deformations of Singularities”, Tata Institute of Fundamental Research, Bombay, 1976.
- [2] K. Behrend and B. Fantechi, The intrinsic normal cone, Invent. Math.128 (1997), 45–88. Zbl0909.14006MR1437495
- [3] S. Bloch, Semi-regularity and de Rham cohomology, Invent. Math.17 (1972) 51-66. Zbl0254.14011MR325613
- [4] R. O. Buchweitz and H. Flenner, A semiregularity map for modules and applications to deformations, Compositio Math. 137 (2003), 135–210. arXiv:math.AG/9912245 Zbl1085.14503MR1985003
- [5] P. Burchard and H. Clemens, Normal differential operators and deformation theory, In: “Recent progress in intersection theory” (Bologna, 1997), Birkhäuser Boston, 2000, 33–84. arXiv:math.AG/9811171 Zbl0971.14019MR1849291
- [6] H. Clemens, Geometry of formal Kuranishi theory. Adv. Math.198 (2005), 311–365. Zbl1092.14004MR2183257
- [7] P. Deligne, P. Griffiths, J. Morgan and D. Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math.29 (1975), 245–274. Zbl0312.55011MR382702
- [8] S. K. Donaldson and P. B. Kronheimer, “The Geometry of Four-Manifolds”, Oxford, University Press, 1990. Zbl0904.57001MR1079726
- [9] A. Douady, Obstruction primaire à la déformation, Sém. Cartan 13 (1960/61), Exp. 4. Zbl0156.42803
- [10] B. Fantechi and M. Manetti, Obstruction calculus for functors of Artin rings, I. J. Algebra202 (1998), 541–576. Zbl0981.13009MR1617687
- [11] D. Fiorenza and M. Manetti, structures on mapping cones, Algebra Number Theory1 (2007), 301–330. Zbl1166.17010MR2361936
- [12] K. Fukaya, Deformation theory, homological algebra and mirror symmetry, In: “Geometry and Physics of Branes” (Como, 2001), Ser. High Energy Phys. Cosmol. Gravit., IOP Bristol, 2003, 121–209. MR1950958
- [13] W. M. Goldman and J. J. Millson, The deformation theory of representations of fundamental groups of compact Kähler manifolds, Inst. Hautes Études Sci. Publ. Math.67 (1988), 43–96. Zbl0678.53059MR972343
- [14] W. M. Goldman and J. J. Millson, The homotopy invariance of the Kuranishi space, Illinois J. Math.34 (1990), 337–367. Zbl0707.32004MR1046568
- [15] M. Green and R. Lazarsfeld, Deformation theory, generic vanishing theorems, and some conjectures of Enriques, Catanese and Beauville, Invent. Math. 90 (1987), 389–407. Zbl0659.14007MR910207
- [16] M. Green and R. Lazarsfeld, Higher obstructions to deforming cohomology groups of line bundles, J. Amer. Math. Soc.4 (1991), 87–103. Zbl0735.14004MR1076513
- [17] R. Hartshorne, “Residues and Duality”, Springer-Verlag, L.N.M., Vol. 20, 1966. Zbl0212.26101MR222093
- [18] D. Iacono, “Differential Graded Lie Algebras and Deformations of Holomorphic Maps”, PhD thesis, 2006, arXiv:math.AG/0701091 Zbl1277.32011
- [19] N. Jacobson, “Lie Algebras”, Wiley & Sons, 1962. Zbl0121.27504
- [20] Y. Kawamata, Unobstructed deformations - a remark on a paper of Z. Ran, J. Algebraic Geom.1 (1992), 183–190. Zbl0818.14004MR1144434
- [21] S. Kobayashi, “Differential Geometry of Complex Vector Bundles”, Princeton, Univ. Press, 1987. Zbl0708.53002MR909698
- [22] K. Kodaira and D. C. Spencer, A theorem of completeness of characteristic systems of complete continuous systems, Amer. J. Math.81 (1959), 477–500. Zbl0097.36501MR112156
- [23] J. Kollár, “Rational curves on algebraic varieties”, Springer-Verlag, Ergebnisse Vol. 32, 1996. Zbl0877.14012
- [24] M. Kontsevich, Deformation quantization of Poisson manifolds, I, Lett. Math. Phys. 66 (2003), 157–216. arXiv:q-alg/9709040 Zbl1058.53065MR2062626
- [25] M. Manetti, Deformation theory via differential graded Lie algebras, In: “Seminari di Geometria Algebrica 1998-1999”, Scuola Normale Superiore, 1999. arXiv:math.AG/0507284 MR1754793
- [26] M. Manetti, Extended deformation functors, Int. Math. Res. Not. 14 (2002), 719–756. arXiv:math.AG/9910071 Zbl1063.58007MR1891232
- [27] M. Manetti, Cohomological constraint to deformations of compact Kähler manifolds, Adv. Math.186 (2004), 125–142. Zbl1075.53074MR2065509
- [28] M. Manetti, Lectures on deformations on complex manifolds, Rend. Mat. Appl. 24 (2004), 1–183. arXiv:math.AG/0507286 Zbl1066.58010MR2130146
- [29] V. P. Palamodov, Deformations of complex spaces, Uspekhi Mat. Nauk. 31:3 (1976), 129–194. Transl. Russian Math. Surveys 31:3 (1976), 129–197. Zbl0347.32009MR508121
- [30] Z. Ran, Hodge theory and the Hilbert scheme, J. Differential Geom.37 (1993), 191–198. Zbl0804.14004MR1198605
- [31] M. Schlessinger, Functors of Artin rings, Trans. Amer. Math. Soc.130 (1968), 208–222. Zbl0167.49503MR217093
- [32] M. Schlessinger and J. Stasheff, Deformation Theory and Rational Homotopy Type, preprint, 1979.
- [33] F. Severi, Sul teorema fondamentale dei sistemi continui di curve sopra una superficie algebrica, Ann. Mat. Pura Appl.23 (1944), 149–181. Zbl0061.33303MR15841
- [34] D. Tanré, “Homotopie Rationelle: Modèles de Chen, Quillen, Sullivan”, Springer-Verlag, Lecture Notes in Mathematics Vol. 1025, 1983. Zbl0539.55001MR764769
- [35] C. Voisin, Sur la stabilité de sous-variétés lagrangiennes des variétés symplectiques holomorphes, In: “Complex Projective Geometry” (Trieste, 1989/Bergen, 1989), London Math. Soc., Lecture Note Ser. Vol. 179, 1992, 294–303. Zbl0765.32012MR1201391
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.