Local Structure of Brill-Noether Strata in the Moduli Space of Flat Stable Bundles

Elena Martinengo

Rendiconti del Seminario Matematico della Università di Padova (2009)

  • Volume: 121, page 259-280
  • ISSN: 0041-8994

How to cite

top

Martinengo, Elena. "Local Structure of Brill-Noether Strata in the Moduli Space of Flat Stable Bundles." Rendiconti del Seminario Matematico della Università di Padova 121 (2009): 259-280. <http://eudml.org/doc/108761>.

@article{Martinengo2009,
author = {Martinengo, Elena},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {eng},
pages = {259-280},
publisher = {Seminario Matematico of the University of Padua},
title = {Local Structure of Brill-Noether Strata in the Moduli Space of Flat Stable Bundles},
url = {http://eudml.org/doc/108761},
volume = {121},
year = {2009},
}

TY - JOUR
AU - Martinengo, Elena
TI - Local Structure of Brill-Noether Strata in the Moduli Space of Flat Stable Bundles
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2009
PB - Seminario Matematico of the University of Padua
VL - 121
SP - 259
EP - 280
LA - eng
UR - http://eudml.org/doc/108761
ER -

References

top
  1. [A] M. ARTIN, On solutions to analytic equation, Invet. Math., vol. 5 (1968), pp. 277-291. Zbl0172.05301MR232018
  2. [F] K. FUKAYA, Deformation theory, homological algebra and mirror symmetry, Geometry and physics of branes (Como, 2001), Ser. High Energy Phys. Cosmol. Gravit., IOP Bristol (2003), pp. 121-209. MR1950958
  3. [G-M88] W. GOLDMAN - J. MILLSON, The deformation theory of representations of foundamental groups of compact Kähler manifolds, Publ. Math. I.H.E.S., 67 (1988), pp. 43-96. Zbl0678.53059MR972343
  4. [G-M90] W. GOLDMAN - J. MILLSON, The homotopy invariance of the Kuranishi space, Illinois Journal of Math., 34 (1990), pp. 337-367. Zbl0707.32004MR1046568
  5. [Hart] R. HARTSHORNE, Algebraic Geometry, Graduate text in mathematics, 52 (Springer, 1977). Zbl0367.14001MR463157
  6. [LePoi] J. LE POITIER, Lectures on vector bundles, Cambridge studies in advanced mathematics, 54 (Cambridge University Press, 1997). Zbl0872.14003MR1428426
  7. [Man99] M. MANETTI, Deformation theory via differential graded Lie algebras, Seminari di Geometria Algebrica 1998-1999, Scuola Normale Superiore (1999). MR1754793
  8. [Man05] M. MANETTI, Differential graded Lie algebras and formal deformation theory, notes of a course at AMS Summer Institute on Algebraic Geometry, Seattle, (2005). Zbl1190.14007
  9. [Man07] M. MANETTI, Lie description of higher obstructions to deforming submanifolds, Ann. Scuola Norm. Sup. Pisa, (5), Vol. VI (2007), pp. 631-659. Zbl1174.13021MR2394413
  10. [N] A. M. NADEL, Singularities and Kodaira dimension of the moduli space of flat Hermitian-Yang-Mills connections, Comp. Math., 67 (1988), pp. 121-128. Zbl0652.32017MR951746
  11. [Nor] A. NORTON, Analytic moduli of complex vector bundles, Indiana Univ. Math. J., 28 (1979), pp. 365-387. Zbl0385.32018MR529671
  12. [S] M. SCHLESSINGER, Functors of Artin rings, Trans. Amer. Math. Soc., 130 (1968), pp. 205-295. Zbl0167.49503MR217093
  13. [Ser] E. SERNESI, Deformation of algebraic schemes, Springer, (2006). Zbl1102.14001MR2247603
  14. [Siu] Y. T. SIU, Complex-analyticity of harmonics maps, vanishing and Lefschetz theorems, J. Diff. Geom., 17 (1982), pp. 55-138. Zbl0497.32025MR658472
  15. [V] R. VAKIL, Murphy's law in algebraic geometry: badly-behaved deformation spaces, Preprint, arXiv: math.AG/0411469. Zbl1095.14006MR1837115

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.