Local Structure of Brill-Noether Strata in the Moduli Space of Flat Stable Bundles
Rendiconti del Seminario Matematico della Università di Padova (2009)
- Volume: 121, page 259-280
- ISSN: 0041-8994
Access Full Article
topHow to cite
topMartinengo, Elena. "Local Structure of Brill-Noether Strata in the Moduli Space of Flat Stable Bundles." Rendiconti del Seminario Matematico della Università di Padova 121 (2009): 259-280. <http://eudml.org/doc/108761>.
@article{Martinengo2009,
author = {Martinengo, Elena},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {eng},
pages = {259-280},
publisher = {Seminario Matematico of the University of Padua},
title = {Local Structure of Brill-Noether Strata in the Moduli Space of Flat Stable Bundles},
url = {http://eudml.org/doc/108761},
volume = {121},
year = {2009},
}
TY - JOUR
AU - Martinengo, Elena
TI - Local Structure of Brill-Noether Strata in the Moduli Space of Flat Stable Bundles
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2009
PB - Seminario Matematico of the University of Padua
VL - 121
SP - 259
EP - 280
LA - eng
UR - http://eudml.org/doc/108761
ER -
References
top- [A] M. ARTIN, On solutions to analytic equation, Invet. Math., vol. 5 (1968), pp. 277-291. Zbl0172.05301MR232018
- [F] K. FUKAYA, Deformation theory, homological algebra and mirror symmetry, Geometry and physics of branes (Como, 2001), Ser. High Energy Phys. Cosmol. Gravit., IOP Bristol (2003), pp. 121-209. MR1950958
- [G-M88] W. GOLDMAN - J. MILLSON, The deformation theory of representations of foundamental groups of compact Kähler manifolds, Publ. Math. I.H.E.S., 67 (1988), pp. 43-96. Zbl0678.53059MR972343
- [G-M90] W. GOLDMAN - J. MILLSON, The homotopy invariance of the Kuranishi space, Illinois Journal of Math., 34 (1990), pp. 337-367. Zbl0707.32004MR1046568
- [Hart] R. HARTSHORNE, Algebraic Geometry, Graduate text in mathematics, 52 (Springer, 1977). Zbl0367.14001MR463157
- [LePoi] J. LE POITIER, Lectures on vector bundles, Cambridge studies in advanced mathematics, 54 (Cambridge University Press, 1997). Zbl0872.14003MR1428426
- [Man99] M. MANETTI, Deformation theory via differential graded Lie algebras, Seminari di Geometria Algebrica 1998-1999, Scuola Normale Superiore (1999). MR1754793
- [Man05] M. MANETTI, Differential graded Lie algebras and formal deformation theory, notes of a course at AMS Summer Institute on Algebraic Geometry, Seattle, (2005). Zbl1190.14007
- [Man07] M. MANETTI, Lie description of higher obstructions to deforming submanifolds, Ann. Scuola Norm. Sup. Pisa, (5), Vol. VI (2007), pp. 631-659. Zbl1174.13021MR2394413
- [N] A. M. NADEL, Singularities and Kodaira dimension of the moduli space of flat Hermitian-Yang-Mills connections, Comp. Math., 67 (1988), pp. 121-128. Zbl0652.32017MR951746
- [Nor] A. NORTON, Analytic moduli of complex vector bundles, Indiana Univ. Math. J., 28 (1979), pp. 365-387. Zbl0385.32018MR529671
- [S] M. SCHLESSINGER, Functors of Artin rings, Trans. Amer. Math. Soc., 130 (1968), pp. 205-295. Zbl0167.49503MR217093
- [Ser] E. SERNESI, Deformation of algebraic schemes, Springer, (2006). Zbl1102.14001MR2247603
- [Siu] Y. T. SIU, Complex-analyticity of harmonics maps, vanishing and Lefschetz theorems, J. Diff. Geom., 17 (1982), pp. 55-138. Zbl0497.32025MR658472
- [V] R. VAKIL, Murphy's law in algebraic geometry: badly-behaved deformation spaces, Preprint, arXiv: math.AG/0411469. Zbl1095.14006MR1837115
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.