Multiplicity results for the prescribed scalar curvature on low spheres

Mohamed Ben Ayed; Mohameden Ould Ahmedou

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2008)

  • Volume: 7, Issue: 4, page 609-634
  • ISSN: 0391-173X

Abstract

top
In this paper, we consider the problem of multiplicity of conformal metrics of prescribed scalar curvature on standard spheres 𝕊 3 , 𝕊 4 . Under generic conditions we establish someMorse Inequalities at Infinity, which give a lower bound on the number of solutions to the above problem in terms of the total contribution of its critical points at Infinityto the difference of topology between the level sets of the associated Euler-Lagrange functional. As a by-product of our arguments we derive a new existence result on 𝕊 4 through an Euler-Hopf type formula.

How to cite

top

Ben Ayed, Mohamed, and Ould Ahmedou, Mohameden. "Multiplicity results for the prescribed scalar curvature on low spheres." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 7.4 (2008): 609-634. <http://eudml.org/doc/272288>.

@article{BenAyed2008,
abstract = {In this paper, we consider the problem of multiplicity of conformal metrics of prescribed scalar curvature on standard spheres $\mathbb \{S\}^3, \mathbb \{S\}^4$. Under generic conditions we establish someMorse Inequalities at Infinity, which give a lower bound on the number of solutions to the above problem in terms of the total contribution of its critical points at Infinityto the difference of topology between the level sets of the associated Euler-Lagrange functional. As a by-product of our arguments we derive a new existence result on $\mathbb \{S\}^4$ through an Euler-Hopf type formula.},
author = {Ben Ayed, Mohamed, Ould Ahmedou, Mohameden},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {multiplicity of conformal metrics; prescribed scalar curvature; spheres; Morse inequalities at infinity; critical points at infinity},
language = {eng},
number = {4},
pages = {609-634},
publisher = {Scuola Normale Superiore, Pisa},
title = {Multiplicity results for the prescribed scalar curvature on low spheres},
url = {http://eudml.org/doc/272288},
volume = {7},
year = {2008},
}

TY - JOUR
AU - Ben Ayed, Mohamed
AU - Ould Ahmedou, Mohameden
TI - Multiplicity results for the prescribed scalar curvature on low spheres
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2008
PB - Scuola Normale Superiore, Pisa
VL - 7
IS - 4
SP - 609
EP - 634
AB - In this paper, we consider the problem of multiplicity of conformal metrics of prescribed scalar curvature on standard spheres $\mathbb {S}^3, \mathbb {S}^4$. Under generic conditions we establish someMorse Inequalities at Infinity, which give a lower bound on the number of solutions to the above problem in terms of the total contribution of its critical points at Infinityto the difference of topology between the level sets of the associated Euler-Lagrange functional. As a by-product of our arguments we derive a new existence result on $\mathbb {S}^4$ through an Euler-Hopf type formula.
LA - eng
KW - multiplicity of conformal metrics; prescribed scalar curvature; spheres; Morse inequalities at infinity; critical points at infinity
UR - http://eudml.org/doc/272288
ER -

References

top
  1. [1] S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equatins satisfying general boundary value conditions, I, Comm. Pure Appl. Math.12 (1959), 623–727. Zbl0093.10401MR125307
  2. [2] A. Ambrosetti, J. Garcia Azorero and A. Peral, Perturbation of - Δ u + u ( N + 2 ) ( N - 2 ) = 0 , the Scalar Curvature Problem in N and related topics, J. Funct. Anal.165 (1999), 117–149. Zbl0938.35056MR1696454
  3. [3] T. Aubin, Equations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire, J. Math. Pures Appl.55 (1976), 269–296. Zbl0336.53033MR431287
  4. [4] T. Aubin, Meilleures constantes de Sobolev et un théorème de Fredholm non linéaire pour la transformation conforme de la courbure scalaire, J. Funct. Anal.32 (1979), 148–174. Zbl0411.46019MR534672
  5. [5] T. Aubin, “Some nonlinear problems in Riemannian geometry”, Springer Monographs Math., Springer Verlag, Berlin, 1998. Zbl0896.53003MR1636569
  6. [6] T. Aubin and A. Bahri, Méthodes de topologie algébrique pour le problème de la courbure scalaire prescrite. (French) [Methods of algebraic topology for the problem of prescribed scalar curvature], J. Math. Pures Appl. 76 (1997), 525–849. Zbl0886.58109MR1465609
  7. [7] T. Aubin and A. Bahri, Une hypothèse topologique pour le problème de la courbure scalaire prescrite. (French) [A topological hypothesis for the problem of prescribed scalar curvature], J. Math. Pures Appl. 76 (1997), 843–850. Zbl0916.58041MR1489940
  8. [8] T. Aubin and E. Hebey, Courbure scalaire prescrite, Bull. Sci. Math.115 (1991), 125–132. Zbl0762.53021MR1101020
  9. [9] A. Bahri, “Critical points at infinity in some variational problems”, Pitman Res. Notes Math. Ser. Longman Sci. Tech. Harlow, Vol. 182, 1989. Zbl0676.58021MR1019828
  10. [10] A. Bahri, An invariant for Yamabe-type flows with applications to scalar curvature problems in high dimension, A celebration of J. F. Nash Jr., Duke Math. J. 81 (1996), 323–466. Zbl0856.53028MR1395407
  11. [11] A. Bahri and J. M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of topology of the domain, Comm. Pure Appl. Math.41 (1988), 255–294. Zbl0649.35033MR929280
  12. [12] A. Bahri and J. M. Coron, The scalar curvature problem on the standard three dimensional spheres, J. Funct. Anal.95 (1991), 106–172. Zbl0722.53032MR1087949
  13. [13] A. Bahri and P. H. Rabinowitz, Periodic solutions of 3 -body problems, Ann. Inst. H. Poincaré Anal. Non linéaire. 8 (1991), 561–649. Zbl0745.34034MR1145561
  14. [14] M. Ben Ayed, Y. Chen, H. Chtioui and M. Hammami, On the prescribed scalar curvature problem on 4-manifolds, Duke Math. J.84 (1996), 633–677. Zbl0862.53034MR1408540
  15. [15] Ben Ayed, H.Chtioui and M. Hammami, The scalar curvature problem on higher dimensional spheres, Duke Math. J. 93 (1998), 379–424. Zbl0977.53035MR1625991
  16. [16] H. Brezis and J. M. Coron, Convergence of solutions of H -systems or how to blow bubbles, Arch. Ration. Mech. Anal.89 (1985), 21–56. Zbl0584.49024MR784102
  17. [17] L. Caffarelli, B. Gidas and J. Spruck, Asymptotic symetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math.42 (1989), 271–297. Zbl0702.35085MR982351
  18. [18] S. A. Chang, M. J. Gursky and P. Yang, The scalar curvature equation on 2 and 3 spheres, Calc. Var. Partial Differential Equations1 (1993), 205–229. Zbl0822.35043MR1261723
  19. [19] K. C. Chang and J. Q. Liu, On Nirenberg’s problem, Internat. J. Math. (1993), 53–58. Zbl0786.58010MR1209959
  20. [20] S. A. Chang and P. Yang, Prescribing Gaussian curvature on S 2 , Acta Math.159 (1987), 215–259. Zbl0636.53053MR908146
  21. [21] S. A. Chang and P. Yang, A perturbation result in prescribing scalar curvature on S n , Duke Math. J.64 (1991), 27–69. Zbl0739.53027MR1131392
  22. [22] C. C. Chen and C. S. Lin, Estimates of the scalar curvature via the method of moving planes I, Comm. Pure Appl. Math.50 (1997), 971–1017. Zbl0958.35013MR1466584
  23. [23] C. C. Chen and C. S. Lin, Estimates of the scalar curvature via the method of moving planes II, J. Differential Geom.49 (1998), 115–178. Zbl0961.35047MR1642113
  24. [24] C. C. Chen and C. S. Lin, Prescribing the scalar curvature on S n , I. A priori estimates, J. Differential Geom. 57 (2001), 67–171. Zbl1043.53028MR1871492
  25. [25] H. Chtioui and M. Ould Ahmedou, Conformal metrics of prescribed scalar curvature on 4 - manifolds: The degree zero case, Preprint 2008. Zbl1154.53006
  26. [26] A. Dold, “Lectures on algebraic topology”, Springer Verlag, Berlin, 1995. Zbl0872.55001MR1335915
  27. [27] J. Escobar and R. Schoen, Conformal metrics with prescribed scalar curvature, Invent. Math.86 (1986), 243–254. Zbl0628.53041MR856845
  28. [28] E. Hebey, Changements de metriques conformes sur la sphere, le problème de Nirenberg, Bull. Sci. Math.114 (1990), 215–242. Zbl0713.53023MR1056162
  29. [29] E. Hebey, The isometry concentration method in the case of a nonlinear problem with Sobolev critical exponent on compact manifolds with boundary, Bull. Sci. Math.116 (1992), 35–51. Zbl0756.35028MR1154371
  30. [30] Y. Y. Li, Prescribing scalar curvature on S n and related topics, Part I, J. Differential Equations, 120 (1995), 319–410. Zbl0827.53039MR1347349
  31. [31] Y.Y. Li, Prescribing scalar curvature on S n and related topics, Part II : existence and compactness, Comm. Pure Appl. Math. 49 (1996), 437–477. Zbl0849.53031MR1383201
  32. [32] C. S. Lin, Estimates of the scalar curvature via the method of moving planes III, Comm. Pure Appl. Math.53 (2000), 611–646. Zbl1035.53052MR1737506
  33. [33] P. L. Lions, The concentration compactness principle in the calculus of variations. The limt case, Rev. Mat. Iberoamericana 1 (1985), I:165–201, II: 45–121. Zbl0704.49006MR850686
  34. [34] J. Milnor, “Lectures on h -cobordism”, Princeton University Press, Princeton, N.J., 1965. Zbl0161.20302MR190942
  35. [35] O. Rey, The role of Green’s function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal.89 (1990), 1–52. Zbl0786.35059MR1040954
  36. [36] M. Schneider, Prescribing scalar curvature on S 3 , Ann. Inst. H. Poincaré Anal. Non Linéaire24 (2007), 563–587. Zbl1151.35360MR2334993
  37. [37] R. Schoen and D. Zhang, Prescribed scalar curvature on the n-sphere, Calc. Var. Partial Differential Equations4 (1996), 1–25. Zbl0843.53037MR1379191
  38. [38] M. Struwe, A flow approach to Nirenberg problem, Duke Math. J.128 (2005), 19–64. Zbl1087.53034MR2137948
  39. [39] M. Struwe, “Variational methods: Applications to nonlinear PDE & Hamilton systems”, Springer-Verlag, Berlin, 1990. Zbl0746.49010
  40. [40] M. Struwe, A global compactness result for elliptic boundary value problems involving nonlinearities, Math. Z.187 (1984), 511–517. Zbl0535.35025MR760051

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.