Qualitative properties of coupled parabolic systems of evolution equations
Stefano Cardanobile; Delio Mugnolo
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2008)
- Volume: 7, Issue: 2, page 287-312
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topCardanobile, Stefano, and Mugnolo, Delio. "Qualitative properties of coupled parabolic systems of evolution equations." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 7.2 (2008): 287-312. <http://eudml.org/doc/272299>.
@article{Cardanobile2008,
abstract = {We apply functional analytical and variational methods in order to study well-posedness and qualitative properties of evolution equations on product Hilbert spaces. To this aim we introduce an algebraic formalism for matrices of sesquilinear mappings. We apply our results to parabolic problems of different nature: a coupled diffusive system arising in neurobiology, a strongly damped wave equation, and a heat equation with dynamic boundary conditions.},
author = {Cardanobile, Stefano, Mugnolo, Delio},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {evolution equations; sesquilinear forms on Hilbert spaces; applications to parabolic problems; products of Hilbert spaces; matrices of sesquilinear mappings},
language = {eng},
number = {2},
pages = {287-312},
publisher = {Scuola Normale Superiore, Pisa},
title = {Qualitative properties of coupled parabolic systems of evolution equations},
url = {http://eudml.org/doc/272299},
volume = {7},
year = {2008},
}
TY - JOUR
AU - Cardanobile, Stefano
AU - Mugnolo, Delio
TI - Qualitative properties of coupled parabolic systems of evolution equations
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2008
PB - Scuola Normale Superiore, Pisa
VL - 7
IS - 2
SP - 287
EP - 312
AB - We apply functional analytical and variational methods in order to study well-posedness and qualitative properties of evolution equations on product Hilbert spaces. To this aim we introduce an algebraic formalism for matrices of sesquilinear mappings. We apply our results to parabolic problems of different nature: a coupled diffusive system arising in neurobiology, a strongly damped wave equation, and a heat equation with dynamic boundary conditions.
LA - eng
KW - evolution equations; sesquilinear forms on Hilbert spaces; applications to parabolic problems; products of Hilbert spaces; matrices of sesquilinear mappings
UR - http://eudml.org/doc/272299
ER -
References
top- [1] F. Ali Mehmeti and S. Nicaise, Nonlinear interaction problems, Nonlinear Anal.20 (1993), 27–61. Zbl0817.35035MR1199063
- [2] H. Amann, Existence and regularity for semilinear parabolic evolution equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci.11 (1984), 593–676. Zbl0625.35045MR808425
- [3] W. Arendt, Semigroups and evolution equations: functional calculus, regularity and kernel estimates, In: “Handbook of Differential Equations: Evolutionary Equations”, Vol. 1, C. M. Dafermos and E. Feireisl (eds.), North Holland, Amsterdam, 2004. Zbl1082.35001MR2103696
- [4] W. Arendt, C. J. K. Batty, M. Hieber and F. Neubrander, “Vector-valued Laplace Transforms and Cauchy Problems", Monographs in Mathematics n. 96, Birkhäuser, Basel, 2001. Zbl0978.34001MR1886588
- [5] S. Binczak, J. C. Eilbeck and A. C. Scott, Ephaptic coupling of myelinated nerve fibres, Phys. D148 (2001), 159–174. Zbl0961.92007MR1811390
- [6] H. Bokil, N. Laaris, K. Blinder, M. Ennis and A. Keller, Ephaptic interactions in the mammalian olfactory system, J. Neurosci. 21 (2001), 21:RC173, 1–5.
- [7] V. Casarino, K.-J. Engel, R. Nagel and G. Nickel, A semigroup approach to boundary feedback systems, Integral Equations Operator Theory47 (2003), 289–306. Zbl1048.47054MR2012840
- [8] S. Cardanobile and D. Mugnolo, Analysis of a FitzHugh-Nagumo-Rall model of a neuronal network, Math. Methods Appl. Sci.30 (2007), 2281–2308. Zbl1195.92007MR2362954
- [9] S. Cardanobile, D. Mugnolo and R. Nittka, Well-posedness and symmetries of strongly coupled network equations. J. Phys. A 41 (2008). Zbl1132.35389MR2433422
- [10] E.B. Davies, “Heat Kernels and Spectral Theory", Cambridge Tracts in Mathematics, n. 92, Cambridge University Press, Cambridge, 1990. Zbl0699.35006MR1103113
- [11] K.-J. Engel, “Operator Matrices and Systems of Evolution Equations", Book manuscript. Zbl0936.34044
- [12] M. Haase, “The Functional Calculus for Sectorial Operators”, Oper. Theory Adv. Appl., Vol. 169, Birkhäuser, Basel, 2006. Zbl1101.47010MR2244037
- [13] G.R. Holt and C. Koch, Electrical interaction via the extracellular potential near cell bodies, J. Comput. Neurosci.2 (1999), 169–184. Zbl0927.92007
- [14] D. Mugnolo, Matrix methods for wave equations, Math. Z.253 (2006), 667–680. Zbl1112.47036MR2221094
- [15] D. Mugnolo, Gaussian estimates for a heat equation on a network, Netw. Heter. Media2 (2007), 55–79. Zbl1142.35349MR2291812
- [16] D. Mugnolo, A variational approach to strongly damped wave equations, In: “Functional Analysis and Evolution Equations: Dedicated to Gunter Lumer", H. Amann et al. (eds.), Birkhäuser, Basel, 2007, 503–514. Zbl1171.35439MR2402747
- [17] R. Nagel, Towards a “matrix theory” for unbounded operator matrices, Math. Z.201 (1989), 57–68. Zbl0672.47001MR990188
- [18] E. M. Ouhabaz, -contraction semigroups for vector-valued functions, Positivity3 (1999), 83–93. Zbl0935.47030MR1675466
- [19] E. M. Ouhabaz, “Analysis of Heat Equations on Domains", LMS Monograph Series, n. 30, Princeton University Press, Princeton, 2004. Zbl1082.35003MR2124040
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.