A Bogomolov property for curves modulo algebraic subgroups
Bulletin de la Société Mathématique de France (2009)
- Volume: 137, Issue: 1, page 93-125
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topHabegger, Philipp. "A Bogomolov property for curves modulo algebraic subgroups." Bulletin de la Société Mathématique de France 137.1 (2009): 93-125. <http://eudml.org/doc/272302>.
@article{Habegger2009,
abstract = {Generalizing a result of Bombieri, Masser, and Zannier we show that on a curve in the algebraic torus which is not contained in any proper coset only finitely many points are close to an algebraic subgroup of codimension at least $2$. The notion of close is defined using the Weil height. We also deduce some cardinality bounds and further finiteness statements.},
author = {Habegger, Philipp},
journal = {Bulletin de la Société Mathématique de France},
keywords = {heights; Bogomolov property; Zilber-Pink conjecture},
language = {eng},
number = {1},
pages = {93-125},
publisher = {Société mathématique de France},
title = {A Bogomolov property for curves modulo algebraic subgroups},
url = {http://eudml.org/doc/272302},
volume = {137},
year = {2009},
}
TY - JOUR
AU - Habegger, Philipp
TI - A Bogomolov property for curves modulo algebraic subgroups
JO - Bulletin de la Société Mathématique de France
PY - 2009
PB - Société mathématique de France
VL - 137
IS - 1
SP - 93
EP - 125
AB - Generalizing a result of Bombieri, Masser, and Zannier we show that on a curve in the algebraic torus which is not contained in any proper coset only finitely many points are close to an algebraic subgroup of codimension at least $2$. The notion of close is defined using the Weil height. We also deduce some cardinality bounds and further finiteness statements.
LA - eng
KW - heights; Bogomolov property; Zilber-Pink conjecture
UR - http://eudml.org/doc/272302
ER -
References
top- [1] F. Amoroso & S. David – « Le problème de Lehmer en dimension supérieure », J. Reine Angew. Math.513 (1999), p. 145–179. Zbl1011.11045MR1713323
- [2] —, « Densité des points à coordonnées multiplicativement indépendantes », Ramanujan J.5 (2001), p. 237–246. Zbl0996.11046MR1876697
- [3] —, « Minoration de la hauteur normalisée dans un tore », J. Inst. Math. Jussieu 2 (2003), no. 3, p. 335–381. Zbl1041.11048MR1990219
- [4] E. Bombieri & W. Gubler – Heights in Diophantine Geometry, Cambridge University Press, 2006. Zbl1130.11034MR2216774
- [5] E. Bombieri, D. Masser & U. Zannier – « Intersecting a curve with algebraic subgroups of multiplicative groups », Int. Math. Res. Not.20 (1999), p. 1119–1140. Zbl0938.11031MR1728021
- [6] —, « Intersecting curves and algebraic subgroups: conjectures and more results », Trans. Amer. Math. Soc. 358 (2006), no. 5, p. 2247–2257. Zbl1161.11025MR2197442
- [7] —, « Anomalous subvarieties - structure theorems and applications », Int. Math. Res. Not. IMRN (2007), no. 19, p. 1–33. Zbl1145.11049MR2359537
- [8] —, « Intersecting a plane with algebraic subgroups of multiplicative groups », Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 7 (2008), p. 51–80. Zbl1150.11022MR2413672
- [9] V. Danilov – « Algebraic varieties and schemes », in Algebraic geometry I (I. Shafarevich, éd.), Encyclopaedia of Mathematical Sciences 23, Springer, 1994. Zbl0787.00008MR1287420
- [10] S. David & P. Philippon – « Minorations des hauteurs normalisées des sous-variétés des tores », Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28 (1999), no. 3, p. 489–543. Zbl1002.11055MR1736526
- [11] E. Dobrowolski – « On a question of Lehmer and the number of irreducible factors of a polynomial », Acta Arith. 34 (1979), no. 4, p. 391–401. Zbl0416.12001MR543210
- [12] J.-H. Evertse – « Points on subvarieties of tori », in A panorama of number theory or the view from Baker’s garden (G. Wüstholz, éd.), Cambridge Univ. Press, 2002. Zbl1040.11047MR1975454
- [13] W. Fulton – Intersection theory, Springer, 1984. Zbl0885.14002MR732620
- [14] A. Galateau – « Minoration de la hauteur normalisée dans un produit de courbes elliptiques », Preprint (Jan. 2007).
- [15] P. Habegger – « Intersecting subvarieties of with algebraic subgroups », Math. Ann. 342 (2008), no. 2, p. 449–466. Zbl1168.14019MR2425150
- [16] R. Hartshorne – Algebraic Geometry, Springer, 1997. Zbl0367.14001
- [17] G. Maurin – « Courbes algébriques et équations multiplicatives », Math. Ann. 341 (2008), no. 4, p. 789–824. Zbl1154.14017MR2407327
- [18] P. Philippon – « Sur des hauteurs alternatives III », J. Math. Pures Appl. (9) 74 (1995), no. 4, p. 345–365. Zbl0878.11025MR1341770
- [19] R. Pink – « A Common Generalization of the Conjectures of André-Oort, Manin-Mumford, and Mordell-Lang », Preprint (Apr. 17th 2005). MR2166087
- [20] B. Poonen – « Mordell-Lang plus Bogomolov », Invent. Math. 137 (1999), no. 2, p. 413–425. Zbl0995.11040MR1705838
- [21] G. Rémond – « Approximation diophantienne sur les variétés semi-abéliennes », Ann. Sci. École Norm. Sup. (4) 36 (2003), no. 2, p. 191–212. Zbl1081.11053MR1980310
- [22] —, « Intersection de sous-groupes et de sous-variétés I », Math. Ann.333 (2005), p. 525–548. Zbl1088.11047MR2198798
- [23] G. Rémond & E. Viada – « Problème de Mordell-Lang modulo certaines sous-variétés abéliennes », Int. Math. Res. Not.35 (2003), p. 1915–1931. Zbl1072.11038
- [24] E. Viada – « The Intersection of a Curve with Algebraic Subgroups in a Product of Elliptic Curves », Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 2 (2003), p. 47–75. Zbl1170.11314MR1990974
- [25] —, « The intersection of a curve with a union of translated codimension-two subgroups in a power of an elliptic curve », Algebra Number Theory 2 (2008), no. 3, p. 249–298. Zbl1168.11024MR2407116
- [26] S. Zhang – « Positive line bundles on arithmetic varieties », J. Amer. Math. Soc. 8 (1995), no. 1, p. 187–221. Zbl0861.14018MR1254133
- [27] B. Zilber – « Exponential sums equations and the Schanuel conjecture », J. London Math. Soc. (2) 65 (2002), no. 1, p. 27–44. Zbl1030.11073MR1875133
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.