A Bogomolov property for curves modulo algebraic subgroups

Philipp Habegger

Bulletin de la Société Mathématique de France (2009)

  • Volume: 137, Issue: 1, page 93-125
  • ISSN: 0037-9484

Abstract

top
Generalizing a result of Bombieri, Masser, and Zannier we show that on a curve in the algebraic torus which is not contained in any proper coset only finitely many points are close to an algebraic subgroup of codimension at least 2 . The notion of close is defined using the Weil height. We also deduce some cardinality bounds and further finiteness statements.

How to cite

top

Habegger, Philipp. "A Bogomolov property for curves modulo algebraic subgroups." Bulletin de la Société Mathématique de France 137.1 (2009): 93-125. <http://eudml.org/doc/272302>.

@article{Habegger2009,
abstract = {Generalizing a result of Bombieri, Masser, and Zannier we show that on a curve in the algebraic torus which is not contained in any proper coset only finitely many points are close to an algebraic subgroup of codimension at least $2$. The notion of close is defined using the Weil height. We also deduce some cardinality bounds and further finiteness statements.},
author = {Habegger, Philipp},
journal = {Bulletin de la Société Mathématique de France},
keywords = {heights; Bogomolov property; Zilber-Pink conjecture},
language = {eng},
number = {1},
pages = {93-125},
publisher = {Société mathématique de France},
title = {A Bogomolov property for curves modulo algebraic subgroups},
url = {http://eudml.org/doc/272302},
volume = {137},
year = {2009},
}

TY - JOUR
AU - Habegger, Philipp
TI - A Bogomolov property for curves modulo algebraic subgroups
JO - Bulletin de la Société Mathématique de France
PY - 2009
PB - Société mathématique de France
VL - 137
IS - 1
SP - 93
EP - 125
AB - Generalizing a result of Bombieri, Masser, and Zannier we show that on a curve in the algebraic torus which is not contained in any proper coset only finitely many points are close to an algebraic subgroup of codimension at least $2$. The notion of close is defined using the Weil height. We also deduce some cardinality bounds and further finiteness statements.
LA - eng
KW - heights; Bogomolov property; Zilber-Pink conjecture
UR - http://eudml.org/doc/272302
ER -

References

top
  1. [1] F. Amoroso & S. David – « Le problème de Lehmer en dimension supérieure », J. Reine Angew. Math.513 (1999), p. 145–179. Zbl1011.11045MR1713323
  2. [2] —, « Densité des points à coordonnées multiplicativement indépendantes », Ramanujan J.5 (2001), p. 237–246. Zbl0996.11046MR1876697
  3. [3] —, « Minoration de la hauteur normalisée dans un tore », J. Inst. Math. Jussieu 2 (2003), no. 3, p. 335–381. Zbl1041.11048MR1990219
  4. [4] E. Bombieri & W. Gubler – Heights in Diophantine Geometry, Cambridge University Press, 2006. Zbl1130.11034MR2216774
  5. [5] E. Bombieri, D. Masser & U. Zannier – « Intersecting a curve with algebraic subgroups of multiplicative groups », Int. Math. Res. Not.20 (1999), p. 1119–1140. Zbl0938.11031MR1728021
  6. [6] —, « Intersecting curves and algebraic subgroups: conjectures and more results », Trans. Amer. Math. Soc. 358 (2006), no. 5, p. 2247–2257. Zbl1161.11025MR2197442
  7. [7] —, « Anomalous subvarieties - structure theorems and applications », Int. Math. Res. Not. IMRN (2007), no. 19, p. 1–33. Zbl1145.11049MR2359537
  8. [8] —, « Intersecting a plane with algebraic subgroups of multiplicative groups », Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 7 (2008), p. 51–80. Zbl1150.11022MR2413672
  9. [9] V. Danilov – « Algebraic varieties and schemes », in Algebraic geometry I (I. Shafarevich, éd.), Encyclopaedia of Mathematical Sciences 23, Springer, 1994. Zbl0787.00008MR1287420
  10. [10] S. David & P. Philippon – « Minorations des hauteurs normalisées des sous-variétés des tores », Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28 (1999), no. 3, p. 489–543. Zbl1002.11055MR1736526
  11. [11] E. Dobrowolski – « On a question of Lehmer and the number of irreducible factors of a polynomial », Acta Arith. 34 (1979), no. 4, p. 391–401. Zbl0416.12001MR543210
  12. [12] J.-H. Evertse – « Points on subvarieties of tori », in A panorama of number theory or the view from Baker’s garden (G. Wüstholz, éd.), Cambridge Univ. Press, 2002. Zbl1040.11047MR1975454
  13. [13] W. Fulton – Intersection theory, Springer, 1984. Zbl0885.14002MR732620
  14. [14] A. Galateau – « Minoration de la hauteur normalisée dans un produit de courbes elliptiques », Preprint (Jan. 2007). 
  15. [15] P. Habegger – « Intersecting subvarieties of 𝐆 m n with algebraic subgroups », Math. Ann. 342 (2008), no. 2, p. 449–466. Zbl1168.14019MR2425150
  16. [16] R. Hartshorne – Algebraic Geometry, Springer, 1997. Zbl0367.14001
  17. [17] G. Maurin – « Courbes algébriques et équations multiplicatives », Math. Ann. 341 (2008), no. 4, p. 789–824. Zbl1154.14017MR2407327
  18. [18] P. Philippon – « Sur des hauteurs alternatives III », J. Math. Pures Appl. (9) 74 (1995), no. 4, p. 345–365. Zbl0878.11025MR1341770
  19. [19] R. Pink – « A Common Generalization of the Conjectures of André-Oort, Manin-Mumford, and Mordell-Lang », Preprint (Apr. 17th 2005). MR2166087
  20. [20] B. Poonen – « Mordell-Lang plus Bogomolov », Invent. Math. 137 (1999), no. 2, p. 413–425. Zbl0995.11040MR1705838
  21. [21] G. Rémond – « Approximation diophantienne sur les variétés semi-abéliennes », Ann. Sci. École Norm. Sup. (4) 36 (2003), no. 2, p. 191–212. Zbl1081.11053MR1980310
  22. [22] —, « Intersection de sous-groupes et de sous-variétés I », Math. Ann.333 (2005), p. 525–548. Zbl1088.11047MR2198798
  23. [23] G. Rémond & E. Viada – « Problème de Mordell-Lang modulo certaines sous-variétés abéliennes », Int. Math. Res. Not.35 (2003), p. 1915–1931. Zbl1072.11038
  24. [24] E. Viada – « The Intersection of a Curve with Algebraic Subgroups in a Product of Elliptic Curves », Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 2 (2003), p. 47–75. Zbl1170.11314MR1990974
  25. [25] —, « The intersection of a curve with a union of translated codimension-two subgroups in a power of an elliptic curve », Algebra Number Theory 2 (2008), no. 3, p. 249–298. Zbl1168.11024MR2407116
  26. [26] S. Zhang – « Positive line bundles on arithmetic varieties », J. Amer. Math. Soc. 8 (1995), no. 1, p. 187–221. Zbl0861.14018MR1254133
  27. [27] B. Zilber – « Exponential sums equations and the Schanuel conjecture », J. London Math. Soc. (2) 65 (2002), no. 1, p. 27–44. Zbl1030.11073MR1875133

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.