Approximation diophantienne sur les variétés semi-abéliennes

Gaël Rémond

Annales scientifiques de l'École Normale Supérieure (2003)

  • Volume: 36, Issue: 2, page 191-212
  • ISSN: 0012-9593

How to cite

top

Rémond, Gaël. "Approximation diophantienne sur les variétés semi-abéliennes." Annales scientifiques de l'École Normale Supérieure 36.2 (2003): 191-212. <http://eudml.org/doc/82599>.

@article{Rémond2003,
author = {Rémond, Gaël},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {semi-abelian varieties; Bogomolov-Lang conjecture},
language = {fre},
number = {2},
pages = {191-212},
publisher = {Elsevier},
title = {Approximation diophantienne sur les variétés semi-abéliennes},
url = {http://eudml.org/doc/82599},
volume = {36},
year = {2003},
}

TY - JOUR
AU - Rémond, Gaël
TI - Approximation diophantienne sur les variétés semi-abéliennes
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2003
PB - Elsevier
VL - 36
IS - 2
SP - 191
EP - 212
LA - fre
KW - semi-abelian varieties; Bogomolov-Lang conjecture
UR - http://eudml.org/doc/82599
ER -

References

top
  1. [1] Bombieri E., Zannier U., Heights of algebraic points on subvarieties of abelian varieties, Ann. Scuola Norm. Sup. Pisa Série IV23 (1996) 779-792. Zbl0897.11020MR1469574
  2. [2] Bost J.-B., Gillet H., Soulé C., Heights of projective varieties and positive Green forms, J. Amer. Math. Soc.7 (1994) 903-1027. Zbl0973.14013MR1260106
  3. [3] David S., Philippon P., Sous-variétés de torsion des variétés semi-abéliennes, C. R. Acad. Sci. Paris331 (2000) 587-592. Zbl0972.11059MR1799094
  4. [4] Evertse J.-H., Points on subvarieties of tori. A Panorama in Number Theory or the View from Baker's Garden, in: Wüstholz G. (Ed.), Proc. Conf. Number Theory in honour of the 60th birthday of Prof. Alan Baker, Zurich 1999, Cambridge Univ. Press, 2002, pp. 214-230. Zbl1040.11047MR1975454
  5. [5] Mumford D., Abelian Varieties, Oxford University Press, 1974. Zbl0223.14022MR282985
  6. [6] Poonen B., Mordell-Lang plus Bogomolov, Invent. Math.137 (1999) 413-425. Zbl0995.11040MR1705838
  7. [7] Rémond G., Inégalité de Vojta en dimension supérieure, Ann. Scuola Norm. Sup. Pisa Série IV29 (2000) 101-151. Zbl0972.11052MR1765539
  8. [8] Rémond G., Décompte dans une conjecture de Lang, Invent. Math.142 (2000) 513-545. Zbl0972.11054MR1804159
  9. [9] Rémond G., Sur les sous-variétés des tores, Comp. Math.134 (2002) 337-366. Zbl1101.14030MR1943907
  10. [10] Rémond G., Inégalité de Vojta généralisée, Prépublication de l'Institut Fourier 584 (2003). 
  11. [11] Vojta P., Integral points on subvarieties of semi-abelian varieties, I, Invent. Math.126 (1996) 133-181. Zbl1011.11040MR1408559
  12. [12] Zhang S., Distribution of almost division points, Duke Math. J.103 (2000) 39-46. Zbl0972.11053MR1758238

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.