Trivialization of -algebras with strongly self-absorbing fibres
Marius Dadarlat; Wilhelm Winter
Bulletin de la Société Mathématique de France (2008)
- Volume: 136, Issue: 4, page 575-606
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topDadarlat, Marius, and Winter, Wilhelm. "Trivialization of $\mathcal {C}(X)$-algebras with strongly self-absorbing fibres." Bulletin de la Société Mathématique de France 136.4 (2008): 575-606. <http://eudml.org/doc/272309>.
@article{Dadarlat2008,
abstract = {Suppose $A$ is a separable unital $\mathcal \{C\}(X)$-algebra each fibre of which is isomorphic to the same strongly self-absorbing and $K_\{1\}$-injective $C^\{*\}$-algebra $\mathcal \{D\}$. We show that $A$ and $\mathcal \{C\}(X) \otimes \mathcal \{D\}$ are isomorphic as $\mathcal \{C\}(X)$-algebras provided the compact Hausdorff space $X$ is finite-dimensional. This statement is known not to extend to the infinite-dimensional case.},
author = {Dadarlat, Marius, Winter, Wilhelm},
journal = {Bulletin de la Société Mathématique de France},
keywords = {strongly self-absorbing $C^*$-algebra; asymptotic unitary equivalence; continuous field of $C^\{*\}$-algebras},
language = {eng},
number = {4},
pages = {575-606},
publisher = {Société mathématique de France},
title = {Trivialization of $\mathcal \{C\}(X)$-algebras with strongly self-absorbing fibres},
url = {http://eudml.org/doc/272309},
volume = {136},
year = {2008},
}
TY - JOUR
AU - Dadarlat, Marius
AU - Winter, Wilhelm
TI - Trivialization of $\mathcal {C}(X)$-algebras with strongly self-absorbing fibres
JO - Bulletin de la Société Mathématique de France
PY - 2008
PB - Société mathématique de France
VL - 136
IS - 4
SP - 575
EP - 606
AB - Suppose $A$ is a separable unital $\mathcal {C}(X)$-algebra each fibre of which is isomorphic to the same strongly self-absorbing and $K_{1}$-injective $C^{*}$-algebra $\mathcal {D}$. We show that $A$ and $\mathcal {C}(X) \otimes \mathcal {D}$ are isomorphic as $\mathcal {C}(X)$-algebras provided the compact Hausdorff space $X$ is finite-dimensional. This statement is known not to extend to the infinite-dimensional case.
LA - eng
KW - strongly self-absorbing $C^*$-algebra; asymptotic unitary equivalence; continuous field of $C^{*}$-algebras
UR - http://eudml.org/doc/272309
ER -
References
top- [1] B. Blackadar & E. Kirchberg – « Generalized inductive limits of finite-dimensional -algebras », Math. Ann.307 (1997), p. 343–380. Zbl0874.46036MR1437044
- [2] E. Blanchard & E. Kirchberg – « Global Glimm halving for -bundles », J. Operator Theory52 (2004), p. 385–420. Zbl1073.46509MR2120237
- [3] M. Dadarlat – « Continuous fields of -algebras over finite dimensional spaces », preprint, arXiv:math.OA/0611405, 2006. Zbl1190.46040MR2555914
- [4] —, « Fiberwise -equivalence of continuous fields of -algebras », preprint, arXiv:math.OA/0611408, 2006.
- [5] M. Dadarlat & W. Winter – « On the -theory of strongly self-absorbing -algebras », preprint, arXiv:0704.0583, to appear in Math. Scand., 2007. Zbl1170.46065MR2498373
- [6] J. Dixmier & A. Douady – « Champs continus d’espaces hilbertiens et de -algèbres », Bull. Soc. Math. France91 (1963), p. 227–284. Zbl0127.33102MR163182
- [7] I. Hirshberg, M. Rørdam & W. Winter – « -algebras, stability and strongly self-absorbing -algebras », Math. Ann.339 (2007), p. 695–732. Zbl1128.46020MR2336064
- [8] W. Hurewicz & H. Wallman – Dimension Theory, Princeton Mathematical Series, v. 4, Princeton University Press, 1941. Zbl0060.39808MR6493
- [9] G. G. Kasparov – « Equivariant -theory and the Novikov conjecture », Invent. Math.91 (1988), p. 147–201. Zbl0647.46053MR918241
- [10] E. Kirchberg – « Central sequences in -algebras and strongly purely infinite algebras », in Operator Algebras: The Abel Symposium 2004, Abel Symp., vol. 1, Springer, 2006, p. 175–231. Zbl1118.46054MR2265050
- [11] M. Rørdam – Classification of nuclear -algebras, Encyclopaedia Math. Sci, vol. 126, Springer, 2002. Zbl0985.00012
- [12] A. S. Toms & W. Winter – « Strongly self-absorbing -algebras », Trans. Amer. Math. Soc.359 (2007), p. 3999–4029. Zbl1120.46046MR2302521
- [13] W. Winter – « Localizing the Elliott conjecture at strongly self-absorbing -algebras », preprint, arXiv:0708.0283, 2007. MR2302521
- [14] —, « Simple -algebras with locally finite decomposition rank », J. Funct. Anal.243 (2007), p. 394–425. Zbl1121.46047MR2289694
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.