Trivialization of 𝒞 ( X ) -algebras with strongly self-absorbing fibres

Marius Dadarlat; Wilhelm Winter

Bulletin de la Société Mathématique de France (2008)

  • Volume: 136, Issue: 4, page 575-606
  • ISSN: 0037-9484

Abstract

top
Suppose A is a separable unital 𝒞 ( X ) -algebra each fibre of which is isomorphic to the same strongly self-absorbing and K 1 -injective C * -algebra 𝒟 . We show that A and 𝒞 ( X ) 𝒟 are isomorphic as 𝒞 ( X ) -algebras provided the compact Hausdorff space X is finite-dimensional. This statement is known not to extend to the infinite-dimensional case.

How to cite

top

Dadarlat, Marius, and Winter, Wilhelm. "Trivialization of $\mathcal {C}(X)$-algebras with strongly self-absorbing fibres." Bulletin de la Société Mathématique de France 136.4 (2008): 575-606. <http://eudml.org/doc/272309>.

@article{Dadarlat2008,
abstract = {Suppose $A$ is a separable unital $\mathcal \{C\}(X)$-algebra each fibre of which is isomorphic to the same strongly self-absorbing and $K_\{1\}$-injective $C^\{*\}$-algebra $\mathcal \{D\}$. We show that $A$ and $\mathcal \{C\}(X) \otimes \mathcal \{D\}$ are isomorphic as $\mathcal \{C\}(X)$-algebras provided the compact Hausdorff space $X$ is finite-dimensional. This statement is known not to extend to the infinite-dimensional case.},
author = {Dadarlat, Marius, Winter, Wilhelm},
journal = {Bulletin de la Société Mathématique de France},
keywords = {strongly self-absorbing $C^*$-algebra; asymptotic unitary equivalence; continuous field of $C^\{*\}$-algebras},
language = {eng},
number = {4},
pages = {575-606},
publisher = {Société mathématique de France},
title = {Trivialization of $\mathcal \{C\}(X)$-algebras with strongly self-absorbing fibres},
url = {http://eudml.org/doc/272309},
volume = {136},
year = {2008},
}

TY - JOUR
AU - Dadarlat, Marius
AU - Winter, Wilhelm
TI - Trivialization of $\mathcal {C}(X)$-algebras with strongly self-absorbing fibres
JO - Bulletin de la Société Mathématique de France
PY - 2008
PB - Société mathématique de France
VL - 136
IS - 4
SP - 575
EP - 606
AB - Suppose $A$ is a separable unital $\mathcal {C}(X)$-algebra each fibre of which is isomorphic to the same strongly self-absorbing and $K_{1}$-injective $C^{*}$-algebra $\mathcal {D}$. We show that $A$ and $\mathcal {C}(X) \otimes \mathcal {D}$ are isomorphic as $\mathcal {C}(X)$-algebras provided the compact Hausdorff space $X$ is finite-dimensional. This statement is known not to extend to the infinite-dimensional case.
LA - eng
KW - strongly self-absorbing $C^*$-algebra; asymptotic unitary equivalence; continuous field of $C^{*}$-algebras
UR - http://eudml.org/doc/272309
ER -

References

top
  1. [1] B. Blackadar & E. Kirchberg – « Generalized inductive limits of finite-dimensional C * -algebras », Math. Ann.307 (1997), p. 343–380. Zbl0874.46036MR1437044
  2. [2] E. Blanchard & E. Kirchberg – « Global Glimm halving for C * -bundles », J. Operator Theory52 (2004), p. 385–420. Zbl1073.46509MR2120237
  3. [3] M. Dadarlat – « Continuous fields of C * -algebras over finite dimensional spaces », preprint, arXiv:math.OA/0611405, 2006. Zbl1190.46040MR2555914
  4. [4] —, « Fiberwise K K -equivalence of continuous fields of C * -algebras », preprint, arXiv:math.OA/0611408, 2006. 
  5. [5] M. Dadarlat & W. Winter – « On the K K -theory of strongly self-absorbing C * -algebras », preprint, arXiv:0704.0583, to appear in Math. Scand., 2007. Zbl1170.46065MR2498373
  6. [6] J. Dixmier & A. Douady – « Champs continus d’espaces hilbertiens et de C * -algèbres », Bull. Soc. Math. France91 (1963), p. 227–284. Zbl0127.33102MR163182
  7. [7] I. Hirshberg, M. Rørdam & W. Winter – « 𝒞 0 ( X ) -algebras, stability and strongly self-absorbing C * -algebras », Math. Ann.339 (2007), p. 695–732. Zbl1128.46020MR2336064
  8. [8] W. Hurewicz & H. Wallman – Dimension Theory, Princeton Mathematical Series, v. 4, Princeton University Press, 1941. Zbl0060.39808MR6493
  9. [9] G. G. Kasparov – « Equivariant K K -theory and the Novikov conjecture », Invent. Math.91 (1988), p. 147–201. Zbl0647.46053MR918241
  10. [10] E. Kirchberg – « Central sequences in C * -algebras and strongly purely infinite algebras », in Operator Algebras: The Abel Symposium 2004, Abel Symp., vol. 1, Springer, 2006, p. 175–231. Zbl1118.46054MR2265050
  11. [11] M. Rørdam – Classification of nuclear C * -algebras, Encyclopaedia Math. Sci, vol. 126, Springer, 2002. Zbl0985.00012
  12. [12] A. S. Toms & W. Winter – « Strongly self-absorbing C * -algebras », Trans. Amer. Math. Soc.359 (2007), p. 3999–4029. Zbl1120.46046MR2302521
  13. [13] W. Winter – « Localizing the Elliott conjecture at strongly self-absorbing C * -algebras », preprint, arXiv:0708.0283, 2007. MR2302521
  14. [14] —, « Simple C * -algebras with locally finite decomposition rank », J. Funct. Anal.243 (2007), p. 394–425. Zbl1121.46047MR2289694

NotesEmbed ?

top

You must be logged in to post comments.