Trivialization of 𝒞 ( X ) -algebras with strongly self-absorbing fibres

Marius Dadarlat; Wilhelm Winter

Bulletin de la Société Mathématique de France (2008)

  • Volume: 136, Issue: 4, page 575-606
  • ISSN: 0037-9484

Abstract

top
Suppose A is a separable unital 𝒞 ( X ) -algebra each fibre of which is isomorphic to the same strongly self-absorbing and K 1 -injective C * -algebra 𝒟 . We show that A and 𝒞 ( X ) 𝒟 are isomorphic as 𝒞 ( X ) -algebras provided the compact Hausdorff space X is finite-dimensional. This statement is known not to extend to the infinite-dimensional case.

How to cite

top

Dadarlat, Marius, and Winter, Wilhelm. "Trivialization of $\mathcal {C}(X)$-algebras with strongly self-absorbing fibres." Bulletin de la Société Mathématique de France 136.4 (2008): 575-606. <http://eudml.org/doc/272309>.

@article{Dadarlat2008,
abstract = {Suppose $A$ is a separable unital $\mathcal \{C\}(X)$-algebra each fibre of which is isomorphic to the same strongly self-absorbing and $K_\{1\}$-injective $C^\{*\}$-algebra $\mathcal \{D\}$. We show that $A$ and $\mathcal \{C\}(X) \otimes \mathcal \{D\}$ are isomorphic as $\mathcal \{C\}(X)$-algebras provided the compact Hausdorff space $X$ is finite-dimensional. This statement is known not to extend to the infinite-dimensional case.},
author = {Dadarlat, Marius, Winter, Wilhelm},
journal = {Bulletin de la Société Mathématique de France},
keywords = {strongly self-absorbing $C^*$-algebra; asymptotic unitary equivalence; continuous field of $C^\{*\}$-algebras},
language = {eng},
number = {4},
pages = {575-606},
publisher = {Société mathématique de France},
title = {Trivialization of $\mathcal \{C\}(X)$-algebras with strongly self-absorbing fibres},
url = {http://eudml.org/doc/272309},
volume = {136},
year = {2008},
}

TY - JOUR
AU - Dadarlat, Marius
AU - Winter, Wilhelm
TI - Trivialization of $\mathcal {C}(X)$-algebras with strongly self-absorbing fibres
JO - Bulletin de la Société Mathématique de France
PY - 2008
PB - Société mathématique de France
VL - 136
IS - 4
SP - 575
EP - 606
AB - Suppose $A$ is a separable unital $\mathcal {C}(X)$-algebra each fibre of which is isomorphic to the same strongly self-absorbing and $K_{1}$-injective $C^{*}$-algebra $\mathcal {D}$. We show that $A$ and $\mathcal {C}(X) \otimes \mathcal {D}$ are isomorphic as $\mathcal {C}(X)$-algebras provided the compact Hausdorff space $X$ is finite-dimensional. This statement is known not to extend to the infinite-dimensional case.
LA - eng
KW - strongly self-absorbing $C^*$-algebra; asymptotic unitary equivalence; continuous field of $C^{*}$-algebras
UR - http://eudml.org/doc/272309
ER -

References

top
  1. [1] B. Blackadar & E. Kirchberg – « Generalized inductive limits of finite-dimensional C * -algebras », Math. Ann.307 (1997), p. 343–380. Zbl0874.46036MR1437044
  2. [2] E. Blanchard & E. Kirchberg – « Global Glimm halving for C * -bundles », J. Operator Theory52 (2004), p. 385–420. Zbl1073.46509MR2120237
  3. [3] M. Dadarlat – « Continuous fields of C * -algebras over finite dimensional spaces », preprint, arXiv:math.OA/0611405, 2006. Zbl1190.46040MR2555914
  4. [4] —, « Fiberwise K K -equivalence of continuous fields of C * -algebras », preprint, arXiv:math.OA/0611408, 2006. 
  5. [5] M. Dadarlat & W. Winter – « On the K K -theory of strongly self-absorbing C * -algebras », preprint, arXiv:0704.0583, to appear in Math. Scand., 2007. Zbl1170.46065MR2498373
  6. [6] J. Dixmier & A. Douady – « Champs continus d’espaces hilbertiens et de C * -algèbres », Bull. Soc. Math. France91 (1963), p. 227–284. Zbl0127.33102MR163182
  7. [7] I. Hirshberg, M. Rørdam & W. Winter – « 𝒞 0 ( X ) -algebras, stability and strongly self-absorbing C * -algebras », Math. Ann.339 (2007), p. 695–732. Zbl1128.46020MR2336064
  8. [8] W. Hurewicz & H. Wallman – Dimension Theory, Princeton Mathematical Series, v. 4, Princeton University Press, 1941. Zbl0060.39808MR6493
  9. [9] G. G. Kasparov – « Equivariant K K -theory and the Novikov conjecture », Invent. Math.91 (1988), p. 147–201. Zbl0647.46053MR918241
  10. [10] E. Kirchberg – « Central sequences in C * -algebras and strongly purely infinite algebras », in Operator Algebras: The Abel Symposium 2004, Abel Symp., vol. 1, Springer, 2006, p. 175–231. Zbl1118.46054MR2265050
  11. [11] M. Rørdam – Classification of nuclear C * -algebras, Encyclopaedia Math. Sci, vol. 126, Springer, 2002. Zbl0985.00012
  12. [12] A. S. Toms & W. Winter – « Strongly self-absorbing C * -algebras », Trans. Amer. Math. Soc.359 (2007), p. 3999–4029. Zbl1120.46046MR2302521
  13. [13] W. Winter – « Localizing the Elliott conjecture at strongly self-absorbing C * -algebras », preprint, arXiv:0708.0283, 2007. MR2302521
  14. [14] —, « Simple C * -algebras with locally finite decomposition rank », J. Funct. Anal.243 (2007), p. 394–425. Zbl1121.46047MR2289694

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.