Focusing of a pulse with arbitrary phase shift for a nonlinear wave equation
Bulletin de la Société Mathématique de France (2003)
- Volume: 131, Issue: 2, page 289-306
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topCarles, Rémi, and Lannes, David. "Focusing of a pulse with arbitrary phase shift for a nonlinear wave equation." Bulletin de la Société Mathématique de France 131.2 (2003): 289-306. <http://eudml.org/doc/272341>.
@article{Carles2003,
abstract = {We consider a system of two linear conservative wave equations, with a nonlinear coupling, in space dimension three. Spherical pulse like initial data cause focusing at the origin in the limit of short wavelength. Because the equations are conservative, the caustic crossing is not trivial, and we analyze it for particular initial data. It turns out that the phase shift between the incoming wave (before the focus) and the outgoing wave (past the focus) behaves like $\ln \varepsilon $, where $\varepsilon $ stands for the wavelength.},
author = {Carles, Rémi, Lannes, David},
journal = {Bulletin de la Société Mathématique de France},
keywords = {nonlinear geometric optics; short pulses; caustic; long range scattering},
language = {eng},
number = {2},
pages = {289-306},
publisher = {Société mathématique de France},
title = {Focusing of a pulse with arbitrary phase shift for a nonlinear wave equation},
url = {http://eudml.org/doc/272341},
volume = {131},
year = {2003},
}
TY - JOUR
AU - Carles, Rémi
AU - Lannes, David
TI - Focusing of a pulse with arbitrary phase shift for a nonlinear wave equation
JO - Bulletin de la Société Mathématique de France
PY - 2003
PB - Société mathématique de France
VL - 131
IS - 2
SP - 289
EP - 306
AB - We consider a system of two linear conservative wave equations, with a nonlinear coupling, in space dimension three. Spherical pulse like initial data cause focusing at the origin in the limit of short wavelength. Because the equations are conservative, the caustic crossing is not trivial, and we analyze it for particular initial data. It turns out that the phase shift between the incoming wave (before the focus) and the outgoing wave (past the focus) behaves like $\ln \varepsilon $, where $\varepsilon $ stands for the wavelength.
LA - eng
KW - nonlinear geometric optics; short pulses; caustic; long range scattering
UR - http://eudml.org/doc/272341
ER -
References
top- [1] D. Alterman & J. Rauch – « Nonlinear geometric optics for short pulses », 178 (2002), no. 2, p. 437–465. Zbl1006.35015MR1879833
- [2] R. Carles – « Geometric optics with caustic crossing for some nonlinear Schrödinger equations », 49 (2000), no. 2, p. 475–551. Zbl0970.35143MR1793681
- [3] —, « Geometric optics and long range scattering for one-dimensional nonlinear Schrödinger equations », 220 (2001), no. 1, p. 41–67. Zbl1029.35211MR1882399
- [4] R. Carles & J. Rauch – « Focusing of Spherical Nonlinear Pulses in , II. Nonlinear Caustic », to appear in Rev. Mat. Iberoamericana. Zbl1094.35081MR2124490
- [5] —, « Absorption d’impulsions non linéaires radiales focalisantes dans », 332 (2001), no. 11, p. 985–990. Zbl0988.35120MR1838124
- [6] —, « Diffusion d’impulsions non linéaires radiales focalisantes dans », 332 (2001), no. 12, p. 1077–1082. Zbl0985.35045MR1847483
- [7] —, « Focusing of spherical nonlinear pulses in », 130 (2002), no. 3, p. 791–804. Zbl0983.35089MR1866035
- [8] —, « Focusing of Spherical Nonlinear Pulses in , III. Sub and Supercritical cases » », Preprint, 2002. Zbl1095.35010MR1866035
- [9] J. Duistermaat – « Oscillatory integrals, Lagrange immersions and unfolding of singularities », 27 (1974), p. 207–281. Zbl0285.35010MR405513
- [10] J. Hunter & J. Keller – « Caustics of nonlinear waves », Wave motion9 (1987), p. 429–443. Zbl0645.35062MR909884
- [11] J.-L. Joly, G. Métivier & J. Rauch – « Focusing at a point and absorption of nonlinear oscillations », 347 (1995), no. 10, p. 3921–3969. Zbl0857.35087MR1297533
- [12] —, « Several recent results in nonlinear geometric optics », Partial differential equations and mathematical physics (Copenhagen, 1995; Lund, 1995), Birkhäuser Boston, Boston, MA, 1996, p. 181–206. Zbl0854.35115MR1380991
- [13] —, Caustics for dissipative semilinear oscillations, vol. 144, no.685, American Mathematical Society, Providence, 2000. Zbl0963.35114MR1682244
- [14] P. Lax – « Asymptotic solutions of oscillatory initial value problems », 24 (1957), p. 627–646. Zbl0083.31801MR97628
- [15] D. Ludwig – « Uniform asymptotic expansions at a caustic », 19 (1966), p. 215–250. Zbl0163.13703MR196254
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.