Radial maximal function characterizations for Hardy spaces on RD-spaces

Loukas Grafakos; Liguang Liu; Dachun Yang

Bulletin de la Société Mathématique de France (2009)

  • Volume: 137, Issue: 2, page 225-251
  • ISSN: 0037-9484

Abstract

top
An RD-space 𝒳 is a space of homogeneous type in the sense of Coifman and Weiss with the additional property that a reverse doubling property holds. The authors prove that for a space of homogeneous type 𝒳 having “dimension” n , there exists a p 0 ( n / ( n + 1 ) , 1 ) such that for certain classes of distributions, the L p ( 𝒳 ) quasi-norms of their radial maximal functions and grand maximal functions are equivalent when p ( p 0 , ] . This result yields a radial maximal function characterization for Hardy spaces on 𝒳 .

How to cite

top

Grafakos, Loukas, Liu, Liguang, and Yang, Dachun. "Radial maximal function characterizations for Hardy spaces on RD-spaces." Bulletin de la Société Mathématique de France 137.2 (2009): 225-251. <http://eudml.org/doc/272343>.

@article{Grafakos2009,
abstract = {An RD-space $\mathcal \{X\}$ is a space of homogeneous type in the sense of Coifman and Weiss with the additional property that a reverse doubling property holds. The authors prove that for a space of homogeneous type $\mathcal \{X\}$ having “dimension” $n$, there exists a $p_0\in (n/(n+1), 1)$ such that for certain classes of distributions, the $L^p(\mathcal \{X\})$ quasi-norms of their radial maximal functions and grand maximal functions are equivalent when $p\in (p_0,\infty ]$. This result yields a radial maximal function characterization for Hardy spaces on $\mathcal \{X\}$.},
author = {Grafakos, Loukas, Liu, Liguang, Yang, Dachun},
journal = {Bulletin de la Société Mathématique de France},
keywords = {space of homogeneous type; approximation of the identity; space of test function; grand maximal function; radial maximal function; Hardy space},
language = {eng},
number = {2},
pages = {225-251},
publisher = {Société mathématique de France},
title = {Radial maximal function characterizations for Hardy spaces on RD-spaces},
url = {http://eudml.org/doc/272343},
volume = {137},
year = {2009},
}

TY - JOUR
AU - Grafakos, Loukas
AU - Liu, Liguang
AU - Yang, Dachun
TI - Radial maximal function characterizations for Hardy spaces on RD-spaces
JO - Bulletin de la Société Mathématique de France
PY - 2009
PB - Société mathématique de France
VL - 137
IS - 2
SP - 225
EP - 251
AB - An RD-space $\mathcal {X}$ is a space of homogeneous type in the sense of Coifman and Weiss with the additional property that a reverse doubling property holds. The authors prove that for a space of homogeneous type $\mathcal {X}$ having “dimension” $n$, there exists a $p_0\in (n/(n+1), 1)$ such that for certain classes of distributions, the $L^p(\mathcal {X})$ quasi-norms of their radial maximal functions and grand maximal functions are equivalent when $p\in (p_0,\infty ]$. This result yields a radial maximal function characterization for Hardy spaces on $\mathcal {X}$.
LA - eng
KW - space of homogeneous type; approximation of the identity; space of test function; grand maximal function; radial maximal function; Hardy space
UR - http://eudml.org/doc/272343
ER -

References

top
  1. [1] G. Alexopoulos – « Spectral multipliers on Lie groups of polynomial growth », Proc. Amer. Math. Soc.120 (1994), p. 973–979. Zbl0794.43003MR1172944
  2. [2] M. Christ – « A T ( b ) theorem with remarks on analytic capacity and the Cauchy integral », Colloq. Math. 60/61 (1990), p. 601–628. Zbl0758.42009MR1096400
  3. [3] R. R. Coifman & G. Weiss – Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Math., Vol. 242, Springer, 1971. Zbl0224.43006MR499948
  4. [4] —, « Extensions of Hardy spaces and their use in analysis », Bull. Amer. Math. Soc.83 (1977), p. 569–645. Zbl0358.30023MR447954
  5. [5] D. Danielli, N. Garofalo & D.-M. Nhieu – « Non-doubling Ahlfors measures, perimeter measures, and the characterization of the trace spaces of Sobolev functions in Carnot-Carathéodory spaces », Mem. Amer. Math. Soc. 182 (2006), p. 119. Zbl1100.43005MR2229731
  6. [6] X. T. Duong & L. Yan – « Hardy spaces of spaces of homogeneous type », Proc. Amer. Math. Soc.131 (2003), p. 3181–3189. Zbl1032.42023MR1992859
  7. [7] C. Fefferman & E. M. Stein – « H p spaces of several variables », Acta Math.129 (1972), p. 137–193. Zbl0257.46078MR447953
  8. [8] L. Grafakos – Classical Fourier analysis, second éd., Graduate Texts in Math., vol. 249, Springer, 2008. Zbl1220.42001MR2445437
  9. [9] L. Grafakos, L. Liu & D. Yang – « Maximal function characterizations of Hardy spaces on RD-spaces and their applications », Sci. China (Ser. A) 51 (2008), p. 2253–2284. Zbl1176.42017MR2462027
  10. [10] Y. Han – « Triebel-Lizorkin spaces on spaces of homogeneous type », Studia Math.108 (1994), p. 247–273. Zbl0822.46033MR1259279
  11. [11] Y. Han, D. Müller & D. Yang – « Littlewood-Paley characterizations for Hardy spaces on spaces of homogeneous type », Math. Nachr.279 (2006), p. 1505–1537. Zbl1179.42016MR2269253
  12. [12] —, « A theory of Besov and Triebel-Lizorkin spaces on metric measure spaces modeled on Carnot-Carathéodory spaces », to appear in Abstr. Appl. Anal, Art. ID 893409, 2008. Zbl1193.46018MR2485404
  13. [13] J. Heinonen – Lectures on analysis on metric spaces, Universitext, Springer, 2001. Zbl0985.46008MR1800917
  14. [14] R. A. Macías & C. Segovia – « A decomposition into atoms of distributions on spaces of homogeneous type », Adv. in Math.33 (1979), p. 271–309. Zbl0431.46019MR546296
  15. [15] D. Müller & D. Yang – « A difference characterization of Besov and Triebel-Lizorkin spaces on RD-spaces », to appear in Forum Math. Zbl1171.42013MR2503306
  16. [16] A. Nagel & E. M. Stein – « Differentiable control metrics and scaled bump functions », J. Differential Geom.57 (2001), p. 465–492. Zbl1041.58006MR1882665
  17. [17] —, « On the product theory of singular integrals », Rev. Mat. Iberoamericana20 (2004), p. 531–561. Zbl1057.42016MR2073131
  18. [18] A. Nagel, E. M. Stein & S. Wainger – « Balls and metrics defined by vector fields. I. Basic properties », Acta Math.155 (1985), p. 103–147. Zbl0578.32044MR793239
  19. [19] E. M. Stein – Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, 1993. Zbl0821.42001MR1232192
  20. [20] —, « Some geometrical concepts arising in harmonic analysis », Geom. Funct. Anal., Special Volume, Part I (2000), p. 434–453, GAFA 2000 (Tel Aviv, 1999). Zbl0996.43001MR1826263
  21. [21] E. M. Stein & G. Weiss – « On the theory of harmonic functions of several variables. I. The theory of H p -spaces », Acta Math.103 (1960), p. 25–62. Zbl0097.28501MR121579
  22. [22] A. Uchiyama – « A maximal function characterization of H p on the space of homogeneous type », Trans. Amer. Math. Soc.262 (1980), p. 579–592. Zbl0503.46020MR586737
  23. [23] N. T. Varopoulos – « Analysis on Lie groups », J. Funct. Anal.76 (1988), p. 346–410. Zbl0634.22008MR924464
  24. [24] N. T. Varopoulos, L. Saloff-Coste & T. Coulhon – Analysis and geometry on groups, Cambridge Tracts in Mathematics, vol. 100, Cambridge University Press, 1992. Zbl0813.22003MR1218884

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.