Radial maximal function characterizations for Hardy spaces on RD-spaces
Loukas Grafakos; Liguang Liu; Dachun Yang
Bulletin de la Société Mathématique de France (2009)
- Volume: 137, Issue: 2, page 225-251
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topGrafakos, Loukas, Liu, Liguang, and Yang, Dachun. "Radial maximal function characterizations for Hardy spaces on RD-spaces." Bulletin de la Société Mathématique de France 137.2 (2009): 225-251. <http://eudml.org/doc/272343>.
@article{Grafakos2009,
abstract = {An RD-space $\mathcal \{X\}$ is a space of homogeneous type in the sense of Coifman and Weiss with the additional property that a reverse doubling property holds. The authors prove that for a space of homogeneous type $\mathcal \{X\}$ having “dimension” $n$, there exists a $p_0\in (n/(n+1), 1)$ such that for certain classes of distributions, the $L^p(\mathcal \{X\})$ quasi-norms of their radial maximal functions and grand maximal functions are equivalent when $p\in (p_0,\infty ]$. This result yields a radial maximal function characterization for Hardy spaces on $\mathcal \{X\}$.},
author = {Grafakos, Loukas, Liu, Liguang, Yang, Dachun},
journal = {Bulletin de la Société Mathématique de France},
keywords = {space of homogeneous type; approximation of the identity; space of test function; grand maximal function; radial maximal function; Hardy space},
language = {eng},
number = {2},
pages = {225-251},
publisher = {Société mathématique de France},
title = {Radial maximal function characterizations for Hardy spaces on RD-spaces},
url = {http://eudml.org/doc/272343},
volume = {137},
year = {2009},
}
TY - JOUR
AU - Grafakos, Loukas
AU - Liu, Liguang
AU - Yang, Dachun
TI - Radial maximal function characterizations for Hardy spaces on RD-spaces
JO - Bulletin de la Société Mathématique de France
PY - 2009
PB - Société mathématique de France
VL - 137
IS - 2
SP - 225
EP - 251
AB - An RD-space $\mathcal {X}$ is a space of homogeneous type in the sense of Coifman and Weiss with the additional property that a reverse doubling property holds. The authors prove that for a space of homogeneous type $\mathcal {X}$ having “dimension” $n$, there exists a $p_0\in (n/(n+1), 1)$ such that for certain classes of distributions, the $L^p(\mathcal {X})$ quasi-norms of their radial maximal functions and grand maximal functions are equivalent when $p\in (p_0,\infty ]$. This result yields a radial maximal function characterization for Hardy spaces on $\mathcal {X}$.
LA - eng
KW - space of homogeneous type; approximation of the identity; space of test function; grand maximal function; radial maximal function; Hardy space
UR - http://eudml.org/doc/272343
ER -
References
top- [1] G. Alexopoulos – « Spectral multipliers on Lie groups of polynomial growth », Proc. Amer. Math. Soc.120 (1994), p. 973–979. Zbl0794.43003MR1172944
- [2] M. Christ – « A theorem with remarks on analytic capacity and the Cauchy integral », Colloq. Math. 60/61 (1990), p. 601–628. Zbl0758.42009MR1096400
- [3] R. R. Coifman & G. Weiss – Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Math., Vol. 242, Springer, 1971. Zbl0224.43006MR499948
- [4] —, « Extensions of Hardy spaces and their use in analysis », Bull. Amer. Math. Soc.83 (1977), p. 569–645. Zbl0358.30023MR447954
- [5] D. Danielli, N. Garofalo & D.-M. Nhieu – « Non-doubling Ahlfors measures, perimeter measures, and the characterization of the trace spaces of Sobolev functions in Carnot-Carathéodory spaces », Mem. Amer. Math. Soc. 182 (2006), p. 119. Zbl1100.43005MR2229731
- [6] X. T. Duong & L. Yan – « Hardy spaces of spaces of homogeneous type », Proc. Amer. Math. Soc.131 (2003), p. 3181–3189. Zbl1032.42023MR1992859
- [7] C. Fefferman & E. M. Stein – « spaces of several variables », Acta Math.129 (1972), p. 137–193. Zbl0257.46078MR447953
- [8] L. Grafakos – Classical Fourier analysis, second éd., Graduate Texts in Math., vol. 249, Springer, 2008. Zbl1220.42001MR2445437
- [9] L. Grafakos, L. Liu & D. Yang – « Maximal function characterizations of Hardy spaces on RD-spaces and their applications », Sci. China (Ser. A) 51 (2008), p. 2253–2284. Zbl1176.42017MR2462027
- [10] Y. Han – « Triebel-Lizorkin spaces on spaces of homogeneous type », Studia Math.108 (1994), p. 247–273. Zbl0822.46033MR1259279
- [11] Y. Han, D. Müller & D. Yang – « Littlewood-Paley characterizations for Hardy spaces on spaces of homogeneous type », Math. Nachr.279 (2006), p. 1505–1537. Zbl1179.42016MR2269253
- [12] —, « A theory of Besov and Triebel-Lizorkin spaces on metric measure spaces modeled on Carnot-Carathéodory spaces », to appear in Abstr. Appl. Anal, Art. ID 893409, 2008. Zbl1193.46018MR2485404
- [13] J. Heinonen – Lectures on analysis on metric spaces, Universitext, Springer, 2001. Zbl0985.46008MR1800917
- [14] R. A. Macías & C. Segovia – « A decomposition into atoms of distributions on spaces of homogeneous type », Adv. in Math.33 (1979), p. 271–309. Zbl0431.46019MR546296
- [15] D. Müller & D. Yang – « A difference characterization of Besov and Triebel-Lizorkin spaces on RD-spaces », to appear in Forum Math. Zbl1171.42013MR2503306
- [16] A. Nagel & E. M. Stein – « Differentiable control metrics and scaled bump functions », J. Differential Geom.57 (2001), p. 465–492. Zbl1041.58006MR1882665
- [17] —, « On the product theory of singular integrals », Rev. Mat. Iberoamericana20 (2004), p. 531–561. Zbl1057.42016MR2073131
- [18] A. Nagel, E. M. Stein & S. Wainger – « Balls and metrics defined by vector fields. I. Basic properties », Acta Math.155 (1985), p. 103–147. Zbl0578.32044MR793239
- [19] E. M. Stein – Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, 1993. Zbl0821.42001MR1232192
- [20] —, « Some geometrical concepts arising in harmonic analysis », Geom. Funct. Anal., Special Volume, Part I (2000), p. 434–453, GAFA 2000 (Tel Aviv, 1999). Zbl0996.43001MR1826263
- [21] E. M. Stein & G. Weiss – « On the theory of harmonic functions of several variables. I. The theory of -spaces », Acta Math.103 (1960), p. 25–62. Zbl0097.28501MR121579
- [22] A. Uchiyama – « A maximal function characterization of on the space of homogeneous type », Trans. Amer. Math. Soc.262 (1980), p. 579–592. Zbl0503.46020MR586737
- [23] N. T. Varopoulos – « Analysis on Lie groups », J. Funct. Anal.76 (1988), p. 346–410. Zbl0634.22008MR924464
- [24] N. T. Varopoulos, L. Saloff-Coste & T. Coulhon – Analysis and geometry on groups, Cambridge Tracts in Mathematics, vol. 100, Cambridge University Press, 1992. Zbl0813.22003MR1218884
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.