Dissymmetric bilateral weighted shifts are hyper-reflexive

Xavier Dussau

Bulletin de la Société Mathématique de France (2002)

  • Volume: 130, Issue: 4, page 573-585
  • ISSN: 0037-9484

Abstract

top
We prove the hyper-reflexivity of the bilateral weighted shift S ω on  ω 2 ( ) , when the weight satisfies ω ( n ) = 1 for n 0 , and lim n - ω ( n ) = + .

How to cite

top

Dussau, Xavier. "Les shifts à poids dissymétriques sont hyper-réflexifs." Bulletin de la Société Mathématique de France 130.4 (2002): 573-585. <http://eudml.org/doc/272369>.

@article{Dussau2002,
abstract = {Nous prouvons l’hyper-réflexivité du shift bilatéral $S_\{\omega \}$ sur $\ell _\{\omega \}^\{2\}(\{\mathbb \{Z\}\})$, lorsque le poids vérifie $\omega (n)=1$ for $n \ge 0$ et $\lim _\{n \rightarrow -\infty \}\omega (n)=+\infty $.},
author = {Dussau, Xavier},
journal = {Bulletin de la Société Mathématique de France},
keywords = {weighted shift; reflexivity},
language = {fre},
number = {4},
pages = {573-585},
publisher = {Société mathématique de France},
title = {Les shifts à poids dissymétriques sont hyper-réflexifs},
url = {http://eudml.org/doc/272369},
volume = {130},
year = {2002},
}

TY - JOUR
AU - Dussau, Xavier
TI - Les shifts à poids dissymétriques sont hyper-réflexifs
JO - Bulletin de la Société Mathématique de France
PY - 2002
PB - Société mathématique de France
VL - 130
IS - 4
SP - 573
EP - 585
AB - Nous prouvons l’hyper-réflexivité du shift bilatéral $S_{\omega }$ sur $\ell _{\omega }^{2}({\mathbb {Z}})$, lorsque le poids vérifie $\omega (n)=1$ for $n \ge 0$ et $\lim _{n \rightarrow -\infty }\omega (n)=+\infty $.
LA - fre
KW - weighted shift; reflexivity
UR - http://eudml.org/doc/272369
ER -

References

top
  1. [1] H. Bercovici, C. Foias & B. S. Nagy – « Reflexive and hyper-reflexive operators of class C 0 », Acta Sci. Math (Szeged) 43 (1981), p. 5–13. Zbl0466.47009MR621348
  2. [2] R. Douglas, H. Shapiro & A. Shields – « Cyclic vectors and invariant subspaces for the backward shift operator », Ann. Inst. Fourier20 (1970), p. 37–76. Zbl0186.45302MR270196
  3. [3] X. Dussau – « Les shifts à poids de croissance polynomiale sont hyper-réflexifs », à paraître. Zbl1053.47027
  4. [4] J. Esterle – « Apostol’s bilateral weighted shifts are hypereflexives », Operator Theory : Advances and Applications, à paraître. Zbl0994.47009
  5. [5] —, « Uniqueness, strong forms of uniqueness and negative powers of contractions », Funct. Anal. and Operator Theory, Banach Center Pub. 30 (1994), p. 127–145. Zbl0893.46043MR1285603
  6. [6] —, « Singular inner functions and biinvariant subspaces for disymmetric weighted shifts », J. Funct. Anal. 144 (1997), no. 1, p. 60–104. Zbl0938.47003MR1430716
  7. [7] V. Kapustin – « Reflexivity of operators : general methods and a criterion for almost isometric contractions », St. Petersbourg Math. J. 4 (1993), no. 2, p. 319–335. Zbl0791.47037MR1182398
  8. [8] B. S. Nagy & C. Foias – Harmonic analysis of operators on Hilbert spaces, North-Holland Publishing. Co., Amsterdam, 1970. Zbl0201.45003MR275190
  9. [9] A. Shields – « Weighted shift operators and analytic function theory », Topics in Operator Theory, Math. Surveys, vol. 13, Amer. Math. Society, Providence, R.I., 1974, p. 49–128. Zbl0303.47021MR361899

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.