Cyclic vectors and invariant subspaces for the backward shift operator
R. G. Douglas; H. S. Shapiro; A. L. Shields
Annales de l'institut Fourier (1970)
- Volume: 20, Issue: 1, page 37-76
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] N. ARONSZAJN, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950) 337-404. Zbl0037.20701MR14,479c
- [2] S. BANACH, Théorie des opérations linéaires, Warszawa, 1932. Zbl0005.20901JFM58.0420.01
- [3] ARNE BEURLING, On two problems concerning linear transformations in Hilbert space, Acta Math. 81 (1949) 239-255. Zbl0033.37701
- [4] L. BIEBERBACH, Lehrbuch der Funktionentheorie, Bd. II, Zweite Aufl., Leipzig, (1931). Zbl0001.21103JFM57.0340.01
- [5] L. BIEBERBACH, Analytische Fortsetzung, Ergeb. der Math., Neue Folge, Heft 3, Springer-Verlag, 1955. Zbl0064.06902
- [6] R.P. BOAS, Entire Functions, Academic Press, New York, 1954. Zbl0058.30201MR16,914f
- [7] T. CARLEMAN, L'Intégrale de Fourier et questions qui s'y rattachent, Uppsala, 1944. Zbl0060.25504
- [8] R.G. DOUGLAS and W. RUDIN, Approximation by inner functions, Pac. J. Wath. 31 (1969) 313-320. Zbl0189.13803MR40 #7814
- [9] R.G. DOUGLAS, H.S. SHAPIRO and A.L. SHIELDS, On cyclic vectors of the backward shift, Bull. Amer. Math. Soc. 73 (1967) 156-159. Zbl0152.13902MR34 #3316
- [10] P.R. HALMOS, A Hilbert Space Problem Book, van Nostrand, Princeton, 1967. Zbl0144.38704MR34 #8178
- [11] M.T. HAPLANOV, On the completeness of some systems of analytic functions, Uchen. Zapiski Rostov. Gos. Ped. Inst. N° 3 (1955) 53-58 (Russian). Zbl0068.28702
- [12] KENNETH HOFFMAN, Banach Spaces of Analytic Functions, Prentice-Hall, Englewood Cliffs, N. J., 1962. Zbl0117.34001
- [13] Yu. A. KAZ'MIN, On sequences of remainders of Taylor series, Vyestnik Moskov, Univ. Ser. 1, 5 (1963) 35-46 (Russian). Zbl0119.29201
- [14] HERBERT MESCHKOWSKI, Hilbertsche Räume mit Kernfunktion, Springer, Berlin, 1962. Zbl0103.08802
- [15] Z. NEHARI, On bounded bilinear forms, Ann. Math. 65 (1957), 153-162. Zbl0077.10605MR18,633f
- [16] E. NORDGREN, Composition operators, Can. J. Math. 20 (1968) 442-449. Zbl0161.34703MR36 #6961
- [17] BERTIL NYMAN, On the one-dimensional translation group and semi-group in certain function spaces, Dissertation, Uppsala, 1950. Zbl0037.35401
- [18] I.I. PRIVALOV, Randeigenschaften Analytischer Funktionen, Zweite Aufl., Deutscher Verlag der Wiss., Berlin, 1956. Zbl0073.06501
- [19] J. RYFF, Subordinate Hp functions, Duke J. Math. 33 (1966) 347-354. Zbl0148.30205MR33 #289
- [20] H.S. SHAPIRO, Smoothness of the boundary function of a holomorphic function of bounded type, Ark. f. Mat. 7 (1968) 443-447. Zbl0165.40204MR38 #4691
- [21] H.S. SHAPIRO, Overconvergence of sequences of rational functions with sparse poles, Ark. f. Mat. 7 (1967) 343-349. Zbl0159.41903MR38 #4658
- [22] H.S. SHAPIRO, Generalized analytic continuation, Symposia on Theor. Phys. and Math. vol. 8, Plenum Press, New York (1968) 151-163. Zbl0181.35103MR39 #2953
- [23] H.S. SHAPIRO, Functions nowhere continuable in a generalized sense, Publications of the Ramanujan Institute, vol. I, Madras (in press). Zbl0196.08704
- [24] H.S. SHAPIRO, Weighted polynomial approximation and boundary behavior of analytic functions, in “Contemporary Problems of the Theory of Analytic Functions”, Nauka, Moscow (1966) 326-335. Zbl0174.36701MR35 #383
- [25] H.S. SHAPIRO, Weakly invertible elements in certain function spaces and generators in l1, Michigan Math. J. 11 (1964) 161-165. Zbl0133.37303MR29 #3620
- [26] SZ.-NAGY and C. FOIAS, Analyse Harmonique des Opérateurs de l'Espace de Hilbert, Akademiai Kiado, Budapest, 1967. Zbl0157.43201MR37 #778
- [27] G. TS. TUMARKIN, Conditions for the convergence of the boundary values of analytic functions and approximation on rectifiable curves, in “Contemporary Problems of the Theory of Analytic Functions”, Nauka, Moscow (1966) 283-295 (Russian). Zbl0182.40404
- [28] G. TS. TUMARKIN, Description of a class of functions approximable by rational functions with fixed poles, Izv. Akad. Nauk Armyanskoi SSR I, 1966, No. 2 pp. 89-105 (Russian). Zbl0182.40401
- [29] G. TS. TUMARKIN, Convergent sequences of Blaschke products, Sibirsk Mat. Z. V (1964), 201-233 (Russian). Zbl0178.42002
- [30] G. TS. TUMARKIN, Conditions for the uniform convergence and convergence of the boundary values of analytic and meromorphic functions of uniformly bounded characteristic, Mat. Z, V (1964), 387-417 (Russian). Zbl0141.07702
Citations in EuDML Documents
top- Derk Pik, Time-variant Darlington synthesis and induced realizations
- Emmanuel Fricain, Complétude des noyaux reproduisants dans les espaces modèles
- Eric T. Sawyer, Good-irreducible inner functions on a polydisc
- Carl C. Cowen, Eva A. Gallardo-Gutiérrez, An introduction to Rota’s universal operators: properties, old and new examples and future issues
- Xavier Dussau, Les shifts à poids dissymétriques sont hyper-réflexifs
- Guy Ruckebusch, Théorie géométrique de la Représentation Markovienne
- Bernard Virot, Modèles d'opérateurs linéaires et translations unilatérales simples
- J. Esterle, Closed ideals in certain Beurling algebras, and synthesis of hyperdistributions
NotesEmbed ?
topBonjour, Théorème : f est un vecteur cyclique si et seulement s’il existe une fonction g, méromorphe et de caractéristique (nevanlinnienne) ... je pense qu'il ya une petite faute ,f est un vecteur non-cyclique si et seulement si ... est_ce vrai?