Cyclic vectors and invariant subspaces for the backward shift operator
R. G. Douglas; H. S. Shapiro; A. L. Shields
Annales de l'institut Fourier (1970)
- Volume: 20, Issue: 1, page 37-76
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topDouglas, R. G., Shapiro, H. S., and Shields, A. L.. "Cyclic vectors and invariant subspaces for the backward shift operator." Annales de l'institut Fourier 20.1 (1970): 37-76. <http://eudml.org/doc/74007>.
@article{Douglas1970,
abstract = {The operator $U$ of multiplication by $z$ on the Hardy space $H^2$ of square summable power series has been studied by many authors. In this paper we make a similar study of the adjoint operator $U^*$ (the “backward shift”). Let $K_f$ denote the cyclic subspace generated by $f(f\in H^2)$, that is, the smallest closed subspace of $H^2$ that contains $\lbrace U^\{*n\}f\rbrace $$(n\ge 0)$. If $K_f=H^2$, then $f$ is called a cyclic vector for $U^*$. Theorem : $f$ is a cyclic vector if and only if there is a function $g$, meromorphic and of bounded Nevanlinna characteristic in the region $1< \vert z\vert =\infty $, such that the radical limits of $f$ and $g$ coincide almost everywhere on the boundary $\vert z\vert =1.$ Such a $g$ is called a “pseudo analytic continuation” of $f$. Other results include the following. If $f$ has a power series with Hadamard gaps, then $f$ is a cyclic vector. If $f$ is not cyclic, and if $f$ can be continued analytically across some boundary point, then every function $h\in K_f$ can be continued across this same point. The set of all the non-cyclic vectors is a dense $F_\sigma $ set of the first category that is also a vector subspace of $H^2$. In addition we study the relationship of cyclic vectors to inner functions, and to approximation by rational functions.},
author = {Douglas, R. G., Shapiro, H. S., Shields, A. L.},
journal = {Annales de l'institut Fourier},
keywords = {functional analysis},
language = {eng},
number = {1},
pages = {37-76},
publisher = {Association des Annales de l'Institut Fourier},
title = {Cyclic vectors and invariant subspaces for the backward shift operator},
url = {http://eudml.org/doc/74007},
volume = {20},
year = {1970},
}
TY - JOUR
AU - Douglas, R. G.
AU - Shapiro, H. S.
AU - Shields, A. L.
TI - Cyclic vectors and invariant subspaces for the backward shift operator
JO - Annales de l'institut Fourier
PY - 1970
PB - Association des Annales de l'Institut Fourier
VL - 20
IS - 1
SP - 37
EP - 76
AB - The operator $U$ of multiplication by $z$ on the Hardy space $H^2$ of square summable power series has been studied by many authors. In this paper we make a similar study of the adjoint operator $U^*$ (the “backward shift”). Let $K_f$ denote the cyclic subspace generated by $f(f\in H^2)$, that is, the smallest closed subspace of $H^2$ that contains $\lbrace U^{*n}f\rbrace $$(n\ge 0)$. If $K_f=H^2$, then $f$ is called a cyclic vector for $U^*$. Theorem : $f$ is a cyclic vector if and only if there is a function $g$, meromorphic and of bounded Nevanlinna characteristic in the region $1< \vert z\vert =\infty $, such that the radical limits of $f$ and $g$ coincide almost everywhere on the boundary $\vert z\vert =1.$ Such a $g$ is called a “pseudo analytic continuation” of $f$. Other results include the following. If $f$ has a power series with Hadamard gaps, then $f$ is a cyclic vector. If $f$ is not cyclic, and if $f$ can be continued analytically across some boundary point, then every function $h\in K_f$ can be continued across this same point. The set of all the non-cyclic vectors is a dense $F_\sigma $ set of the first category that is also a vector subspace of $H^2$. In addition we study the relationship of cyclic vectors to inner functions, and to approximation by rational functions.
LA - eng
KW - functional analysis
UR - http://eudml.org/doc/74007
ER -
References
top- [1] N. ARONSZAJN, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950) 337-404. Zbl0037.20701MR14,479c
- [2] S. BANACH, Théorie des opérations linéaires, Warszawa, 1932. Zbl0005.20901JFM58.0420.01
- [3] ARNE BEURLING, On two problems concerning linear transformations in Hilbert space, Acta Math. 81 (1949) 239-255. Zbl0033.37701
- [4] L. BIEBERBACH, Lehrbuch der Funktionentheorie, Bd. II, Zweite Aufl., Leipzig, (1931). Zbl0001.21103JFM57.0340.01
- [5] L. BIEBERBACH, Analytische Fortsetzung, Ergeb. der Math., Neue Folge, Heft 3, Springer-Verlag, 1955. Zbl0064.06902
- [6] R.P. BOAS, Entire Functions, Academic Press, New York, 1954. Zbl0058.30201MR16,914f
- [7] T. CARLEMAN, L'Intégrale de Fourier et questions qui s'y rattachent, Uppsala, 1944. Zbl0060.25504
- [8] R.G. DOUGLAS and W. RUDIN, Approximation by inner functions, Pac. J. Wath. 31 (1969) 313-320. Zbl0189.13803MR40 #7814
- [9] R.G. DOUGLAS, H.S. SHAPIRO and A.L. SHIELDS, On cyclic vectors of the backward shift, Bull. Amer. Math. Soc. 73 (1967) 156-159. Zbl0152.13902MR34 #3316
- [10] P.R. HALMOS, A Hilbert Space Problem Book, van Nostrand, Princeton, 1967. Zbl0144.38704MR34 #8178
- [11] M.T. HAPLANOV, On the completeness of some systems of analytic functions, Uchen. Zapiski Rostov. Gos. Ped. Inst. N° 3 (1955) 53-58 (Russian). Zbl0068.28702
- [12] KENNETH HOFFMAN, Banach Spaces of Analytic Functions, Prentice-Hall, Englewood Cliffs, N. J., 1962. Zbl0117.34001
- [13] Yu. A. KAZ'MIN, On sequences of remainders of Taylor series, Vyestnik Moskov, Univ. Ser. 1, 5 (1963) 35-46 (Russian). Zbl0119.29201
- [14] HERBERT MESCHKOWSKI, Hilbertsche Räume mit Kernfunktion, Springer, Berlin, 1962. Zbl0103.08802
- [15] Z. NEHARI, On bounded bilinear forms, Ann. Math. 65 (1957), 153-162. Zbl0077.10605MR18,633f
- [16] E. NORDGREN, Composition operators, Can. J. Math. 20 (1968) 442-449. Zbl0161.34703MR36 #6961
- [17] BERTIL NYMAN, On the one-dimensional translation group and semi-group in certain function spaces, Dissertation, Uppsala, 1950. Zbl0037.35401
- [18] I.I. PRIVALOV, Randeigenschaften Analytischer Funktionen, Zweite Aufl., Deutscher Verlag der Wiss., Berlin, 1956. Zbl0073.06501
- [19] J. RYFF, Subordinate Hp functions, Duke J. Math. 33 (1966) 347-354. Zbl0148.30205MR33 #289
- [20] H.S. SHAPIRO, Smoothness of the boundary function of a holomorphic function of bounded type, Ark. f. Mat. 7 (1968) 443-447. Zbl0165.40204MR38 #4691
- [21] H.S. SHAPIRO, Overconvergence of sequences of rational functions with sparse poles, Ark. f. Mat. 7 (1967) 343-349. Zbl0159.41903MR38 #4658
- [22] H.S. SHAPIRO, Generalized analytic continuation, Symposia on Theor. Phys. and Math. vol. 8, Plenum Press, New York (1968) 151-163. Zbl0181.35103MR39 #2953
- [23] H.S. SHAPIRO, Functions nowhere continuable in a generalized sense, Publications of the Ramanujan Institute, vol. I, Madras (in press). Zbl0196.08704
- [24] H.S. SHAPIRO, Weighted polynomial approximation and boundary behavior of analytic functions, in “Contemporary Problems of the Theory of Analytic Functions”, Nauka, Moscow (1966) 326-335. Zbl0174.36701MR35 #383
- [25] H.S. SHAPIRO, Weakly invertible elements in certain function spaces and generators in l1, Michigan Math. J. 11 (1964) 161-165. Zbl0133.37303MR29 #3620
- [26] SZ.-NAGY and C. FOIAS, Analyse Harmonique des Opérateurs de l'Espace de Hilbert, Akademiai Kiado, Budapest, 1967. Zbl0157.43201MR37 #778
- [27] G. TS. TUMARKIN, Conditions for the convergence of the boundary values of analytic functions and approximation on rectifiable curves, in “Contemporary Problems of the Theory of Analytic Functions”, Nauka, Moscow (1966) 283-295 (Russian). Zbl0182.40404
- [28] G. TS. TUMARKIN, Description of a class of functions approximable by rational functions with fixed poles, Izv. Akad. Nauk Armyanskoi SSR I, 1966, No. 2 pp. 89-105 (Russian). Zbl0182.40401
- [29] G. TS. TUMARKIN, Convergent sequences of Blaschke products, Sibirsk Mat. Z. V (1964), 201-233 (Russian). Zbl0178.42002
- [30] G. TS. TUMARKIN, Conditions for the uniform convergence and convergence of the boundary values of analytic and meromorphic functions of uniformly bounded characteristic, Mat. Z, V (1964), 387-417 (Russian). Zbl0141.07702
Citations in EuDML Documents
top- Derk Pik, Time-variant Darlington synthesis and induced realizations
- Emmanuel Fricain, Complétude des noyaux reproduisants dans les espaces modèles
- Eric T. Sawyer, Good-irreducible inner functions on a polydisc
- Carl C. Cowen, Eva A. Gallardo-Gutiérrez, An introduction to Rota’s universal operators: properties, old and new examples and future issues
- Xavier Dussau, Les shifts à poids dissymétriques sont hyper-réflexifs
- Guy Ruckebusch, Théorie géométrique de la Représentation Markovienne
- Bernard Virot, Modèles d'opérateurs linéaires et translations unilatérales simples
- J. Esterle, Closed ideals in certain Beurling algebras, and synthesis of hyperdistributions
NotesEmbed ?
topBonjour, Théorème : f est un vecteur cyclique si et seulement s’il existe une fonction g, méromorphe et de caractéristique (nevanlinnienne) ... je pense qu'il ya une petite faute ,f est un vecteur non-cyclique si et seulement si ... est_ce vrai?
To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.