Cyclic vectors and invariant subspaces for the backward shift operator

R. G. Douglas; H. S. Shapiro; A. L. Shields

Annales de l'institut Fourier (1970)

  • Volume: 20, Issue: 1, page 37-76
  • ISSN: 0373-0956

Abstract

top
The operator U of multiplication by z on the Hardy space H 2 of square summable power series has been studied by many authors. In this paper we make a similar study of the adjoint operator U * (the “backward shift”). Let K f denote the cyclic subspace generated by f ( f H 2 ) , that is, the smallest closed subspace of H 2 that contains { U * n f } ( n 0 ) . If K f = H 2 , then f is called a cyclic vector for U * . Theorem : f is a cyclic vector if and only if there is a function g , meromorphic and of bounded Nevanlinna characteristic in the region 1 < | z | = , such that the radical limits of f and g coincide almost everywhere on the boundary | z | = 1 . Such a g is called a “pseudo analytic continuation” of f . Other results include the following. If f has a power series with Hadamard gaps, then f is a cyclic vector. If f is not cyclic, and if f can be continued analytically across some boundary point, then every function h K f can be continued across this same point. The set of all the non-cyclic vectors is a dense F σ set of the first category that is also a vector subspace of H 2 . In addition we study the relationship of cyclic vectors to inner functions, and to approximation by rational functions.

How to cite

top

Douglas, R. G., Shapiro, H. S., and Shields, A. L.. "Cyclic vectors and invariant subspaces for the backward shift operator." Annales de l'institut Fourier 20.1 (1970): 37-76. <http://eudml.org/doc/74007>.

@article{Douglas1970,
abstract = {The operator $U$ of multiplication by $z$ on the Hardy space $H^2$ of square summable power series has been studied by many authors. In this paper we make a similar study of the adjoint operator $U^*$ (the “backward shift”). Let $K_f$ denote the cyclic subspace generated by $f(f\in H^2)$, that is, the smallest closed subspace of $H^2$ that contains $\lbrace U^\{*n\}f\rbrace $$(n\ge 0)$. If $K_f=H^2$, then $f$ is called a cyclic vector for $U^*$. Theorem : $f$ is a cyclic vector if and only if there is a function $g$, meromorphic and of bounded Nevanlinna characteristic in the region $1&lt; \vert z\vert =\infty $, such that the radical limits of $f$ and $g$ coincide almost everywhere on the boundary $\vert z\vert =1.$ Such a $g$ is called a “pseudo analytic continuation” of $f$. Other results include the following. If $f$ has a power series with Hadamard gaps, then $f$ is a cyclic vector. If $f$ is not cyclic, and if $f$ can be continued analytically across some boundary point, then every function $h\in K_f$ can be continued across this same point. The set of all the non-cyclic vectors is a dense $F_\sigma $ set of the first category that is also a vector subspace of $H^2$. In addition we study the relationship of cyclic vectors to inner functions, and to approximation by rational functions.},
author = {Douglas, R. G., Shapiro, H. S., Shields, A. L.},
journal = {Annales de l'institut Fourier},
keywords = {functional analysis},
language = {eng},
number = {1},
pages = {37-76},
publisher = {Association des Annales de l'Institut Fourier},
title = {Cyclic vectors and invariant subspaces for the backward shift operator},
url = {http://eudml.org/doc/74007},
volume = {20},
year = {1970},
}

TY - JOUR
AU - Douglas, R. G.
AU - Shapiro, H. S.
AU - Shields, A. L.
TI - Cyclic vectors and invariant subspaces for the backward shift operator
JO - Annales de l'institut Fourier
PY - 1970
PB - Association des Annales de l'Institut Fourier
VL - 20
IS - 1
SP - 37
EP - 76
AB - The operator $U$ of multiplication by $z$ on the Hardy space $H^2$ of square summable power series has been studied by many authors. In this paper we make a similar study of the adjoint operator $U^*$ (the “backward shift”). Let $K_f$ denote the cyclic subspace generated by $f(f\in H^2)$, that is, the smallest closed subspace of $H^2$ that contains $\lbrace U^{*n}f\rbrace $$(n\ge 0)$. If $K_f=H^2$, then $f$ is called a cyclic vector for $U^*$. Theorem : $f$ is a cyclic vector if and only if there is a function $g$, meromorphic and of bounded Nevanlinna characteristic in the region $1&lt; \vert z\vert =\infty $, such that the radical limits of $f$ and $g$ coincide almost everywhere on the boundary $\vert z\vert =1.$ Such a $g$ is called a “pseudo analytic continuation” of $f$. Other results include the following. If $f$ has a power series with Hadamard gaps, then $f$ is a cyclic vector. If $f$ is not cyclic, and if $f$ can be continued analytically across some boundary point, then every function $h\in K_f$ can be continued across this same point. The set of all the non-cyclic vectors is a dense $F_\sigma $ set of the first category that is also a vector subspace of $H^2$. In addition we study the relationship of cyclic vectors to inner functions, and to approximation by rational functions.
LA - eng
KW - functional analysis
UR - http://eudml.org/doc/74007
ER -

References

top
  1. [1] N. ARONSZAJN, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950) 337-404. Zbl0037.20701MR14,479c
  2. [2] S. BANACH, Théorie des opérations linéaires, Warszawa, 1932. Zbl0005.20901JFM58.0420.01
  3. [3] ARNE BEURLING, On two problems concerning linear transformations in Hilbert space, Acta Math. 81 (1949) 239-255. Zbl0033.37701
  4. [4] L. BIEBERBACH, Lehrbuch der Funktionentheorie, Bd. II, Zweite Aufl., Leipzig, (1931). Zbl0001.21103JFM57.0340.01
  5. [5] L. BIEBERBACH, Analytische Fortsetzung, Ergeb. der Math., Neue Folge, Heft 3, Springer-Verlag, 1955. Zbl0064.06902
  6. [6] R.P. BOAS, Entire Functions, Academic Press, New York, 1954. Zbl0058.30201MR16,914f
  7. [7] T. CARLEMAN, L'Intégrale de Fourier et questions qui s'y rattachent, Uppsala, 1944. Zbl0060.25504
  8. [8] R.G. DOUGLAS and W. RUDIN, Approximation by inner functions, Pac. J. Wath. 31 (1969) 313-320. Zbl0189.13803MR40 #7814
  9. [9] R.G. DOUGLAS, H.S. SHAPIRO and A.L. SHIELDS, On cyclic vectors of the backward shift, Bull. Amer. Math. Soc. 73 (1967) 156-159. Zbl0152.13902MR34 #3316
  10. [10] P.R. HALMOS, A Hilbert Space Problem Book, van Nostrand, Princeton, 1967. Zbl0144.38704MR34 #8178
  11. [11] M.T. HAPLANOV, On the completeness of some systems of analytic functions, Uchen. Zapiski Rostov. Gos. Ped. Inst. N° 3 (1955) 53-58 (Russian). Zbl0068.28702
  12. [12] KENNETH HOFFMAN, Banach Spaces of Analytic Functions, Prentice-Hall, Englewood Cliffs, N. J., 1962. Zbl0117.34001
  13. [13] Yu. A. KAZ'MIN, On sequences of remainders of Taylor series, Vyestnik Moskov, Univ. Ser. 1, 5 (1963) 35-46 (Russian). Zbl0119.29201
  14. [14] HERBERT MESCHKOWSKI, Hilbertsche Räume mit Kernfunktion, Springer, Berlin, 1962. Zbl0103.08802
  15. [15] Z. NEHARI, On bounded bilinear forms, Ann. Math. 65 (1957), 153-162. Zbl0077.10605MR18,633f
  16. [16] E. NORDGREN, Composition operators, Can. J. Math. 20 (1968) 442-449. Zbl0161.34703MR36 #6961
  17. [17] BERTIL NYMAN, On the one-dimensional translation group and semi-group in certain function spaces, Dissertation, Uppsala, 1950. Zbl0037.35401
  18. [18] I.I. PRIVALOV, Randeigenschaften Analytischer Funktionen, Zweite Aufl., Deutscher Verlag der Wiss., Berlin, 1956. Zbl0073.06501
  19. [19] J. RYFF, Subordinate Hp functions, Duke J. Math. 33 (1966) 347-354. Zbl0148.30205MR33 #289
  20. [20] H.S. SHAPIRO, Smoothness of the boundary function of a holomorphic function of bounded type, Ark. f. Mat. 7 (1968) 443-447. Zbl0165.40204MR38 #4691
  21. [21] H.S. SHAPIRO, Overconvergence of sequences of rational functions with sparse poles, Ark. f. Mat. 7 (1967) 343-349. Zbl0159.41903MR38 #4658
  22. [22] H.S. SHAPIRO, Generalized analytic continuation, Symposia on Theor. Phys. and Math. vol. 8, Plenum Press, New York (1968) 151-163. Zbl0181.35103MR39 #2953
  23. [23] H.S. SHAPIRO, Functions nowhere continuable in a generalized sense, Publications of the Ramanujan Institute, vol. I, Madras (in press). Zbl0196.08704
  24. [24] H.S. SHAPIRO, Weighted polynomial approximation and boundary behavior of analytic functions, in “Contemporary Problems of the Theory of Analytic Functions”, Nauka, Moscow (1966) 326-335. Zbl0174.36701MR35 #383
  25. [25] H.S. SHAPIRO, Weakly invertible elements in certain function spaces and generators in l1, Michigan Math. J. 11 (1964) 161-165. Zbl0133.37303MR29 #3620
  26. [26] SZ.-NAGY and C. FOIAS, Analyse Harmonique des Opérateurs de l'Espace de Hilbert, Akademiai Kiado, Budapest, 1967. Zbl0157.43201MR37 #778
  27. [27] G. TS. TUMARKIN, Conditions for the convergence of the boundary values of analytic functions and approximation on rectifiable curves, in “Contemporary Problems of the Theory of Analytic Functions”, Nauka, Moscow (1966) 283-295 (Russian). Zbl0182.40404
  28. [28] G. TS. TUMARKIN, Description of a class of functions approximable by rational functions with fixed poles, Izv. Akad. Nauk Armyanskoi SSR I, 1966, No. 2 pp. 89-105 (Russian). Zbl0182.40401
  29. [29] G. TS. TUMARKIN, Convergent sequences of Blaschke products, Sibirsk Mat. Z. V (1964), 201-233 (Russian). Zbl0178.42002
  30. [30] G. TS. TUMARKIN, Conditions for the uniform convergence and convergence of the boundary values of analytic and meromorphic functions of uniformly bounded characteristic, Mat. Z, V (1964), 387-417 (Russian). Zbl0141.07702

Citations in EuDML Documents

top
  1. Derk Pik, Time-variant Darlington synthesis and induced realizations
  2. Emmanuel Fricain, Complétude des noyaux reproduisants dans les espaces modèles
  3. Eric T. Sawyer, Good-irreducible inner functions on a polydisc
  4. Carl C. Cowen, Eva A. Gallardo-Gutiérrez, An introduction to Rota’s universal operators: properties, old and new examples and future issues
  5. Xavier Dussau, Les shifts à poids dissymétriques sont hyper-réflexifs
  6. Guy Ruckebusch, Théorie géométrique de la Représentation Markovienne
  7. Bernard Virot, Modèles d'opérateurs linéaires et translations unilatérales simples
  8. J. Esterle, Closed ideals in certain Beurling algebras, and synthesis of hyperdistributions

NotesEmbed ?

top

You must be logged in to post comments.

Bonjour, Théorème : f est un vecteur cyclique si et seulement s’il existe une fonction g, méromorphe et de caractéristique (nevanlinnienne) ... je pense qu'il ya une petite faute ,f est un vecteur non-cyclique si et seulement si ... est_ce vrai?

page 1

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.