Relative exactness modulo a polynomial map and algebraic -actions
Bulletin de la Société Mathématique de France (2003)
- Volume: 131, Issue: 3, page 373-398
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topBonnet, Philippe. "Relative exactness modulo a polynomial map and algebraic $(\mathbb {C}^p , +)$-actions." Bulletin de la Société Mathématique de France 131.3 (2003): 373-398. <http://eudml.org/doc/272374>.
@article{Bonnet2003,
abstract = {Let $F=(f_1,\ldots ,f_q)$ be a polynomial dominating map from $\mathbb \{C\}^n$ to $\mathbb \{C\}^q$. We study the quotient $\{\mathcal \{T\}\}^1(F)$ of polynomial 1-forms that are exact along the generic fibres of $F$, by 1-forms of type $\mathrm \{d\} R + \sum a_i \mathrm \{d\} f_i$, where $R,a_1,\ldots ,a_q$ are polynomials. We prove that $\{\mathcal \{T\}\}^1(F)$ is always a torsion $\mathbb \{C\}[t_1,\ldots ,t_q]$-module. Then we determine under which conditions on $F$ we have $\{\mathcal \{T\}\}^1(F)=0$. As an application, we study the behaviour of a class of algebraic $(\mathbb \{C\}^p ,+)$-actions on $\mathbb \{C\}^n$, and determine in particular when these actions are trivial.},
author = {Bonnet, Philippe},
journal = {Bulletin de la Société Mathématique de France},
keywords = {affine geometry; relative cohomology; invariant theory},
language = {eng},
number = {3},
pages = {373-398},
publisher = {Société mathématique de France},
title = {Relative exactness modulo a polynomial map and algebraic $(\mathbb \{C\}^p , +)$-actions},
url = {http://eudml.org/doc/272374},
volume = {131},
year = {2003},
}
TY - JOUR
AU - Bonnet, Philippe
TI - Relative exactness modulo a polynomial map and algebraic $(\mathbb {C}^p , +)$-actions
JO - Bulletin de la Société Mathématique de France
PY - 2003
PB - Société mathématique de France
VL - 131
IS - 3
SP - 373
EP - 398
AB - Let $F=(f_1,\ldots ,f_q)$ be a polynomial dominating map from $\mathbb {C}^n$ to $\mathbb {C}^q$. We study the quotient ${\mathcal {T}}^1(F)$ of polynomial 1-forms that are exact along the generic fibres of $F$, by 1-forms of type $\mathrm {d} R + \sum a_i \mathrm {d} f_i$, where $R,a_1,\ldots ,a_q$ are polynomials. We prove that ${\mathcal {T}}^1(F)$ is always a torsion $\mathbb {C}[t_1,\ldots ,t_q]$-module. Then we determine under which conditions on $F$ we have ${\mathcal {T}}^1(F)=0$. As an application, we study the behaviour of a class of algebraic $(\mathbb {C}^p ,+)$-actions on $\mathbb {C}^n$, and determine in particular when these actions are trivial.
LA - eng
KW - affine geometry; relative cohomology; invariant theory
UR - http://eudml.org/doc/272374
ER -
References
top- [1] S. Abhyankar – Local analytic geometry, Academic Press, New York-London, 1964. Zbl0205.50401MR175897
- [2] M. Berthier & D. Cerveau – « Quelques calculs de cohomologie relative », 26 (1993), no. 3, p. 403–424. Zbl0805.32007MR1222279
- [3] P. Bonnet & A. Dimca – « Relative differential forms and complex polynomials », 124 (2000), no. 7, p. 557–571. Zbl0980.32007MR1793909
- [4] D. Daigle – « On some properties of locally nilpotent derivations », 114 (1997), p. 221–230. Zbl0885.13003MR1426486
- [5] J. Deveney – « -actions on and », 22 (1994), no. 15, p. 6295–6302. Zbl0867.13002MR1303005
- [6] J. Deveney & D. Finston – « On locally trivial -actions », Transformation Groups 2 (1997), no. 2, p. 137–145. Zbl0913.14012MR1451360
- [7] A. Dimca – Singularities and topology of hypersurfaces, Springer Verlag, New-York-Berlin, 1992. Zbl0753.57001MR1194180
- [8] A. Dimca & L. Poenaru – « On the connectivity of complex affine hypersurfaces, II », Topology39 (2000), p. 1035–1043. Zbl0983.32031MR1763962
- [9] L. Gavrilov – « Petrov modules and zeros of Abelians integrals », 122 (1998), no. 7, p. 571–584. Zbl0964.32022MR1668534
- [10] R. Hartshorne – Algebraic geometry, Springer Verlag, New York-Heidelberg, 1977. Zbl0531.14001MR463157
- [11] H. Kraft – « Challenging problems on affine -space », Sém. Bourbaki 1994/1995, vol. 237, Société Mathématique de France, 1996, exp. 802. Zbl0892.14003MR1423629
- [12] L. Makar-Limanov – « On the hypersurface in or a -like threefold which is not », 96, part B (1996), p. 419–429. Zbl0896.14021MR1433698
- [13] B. Malgrange – « Frobenius avec singularités, 2. Le cas général », 39 (1977), p. 67–89. Zbl0375.32012MR508170
- [14] H. Matsumura – Commutative Algebra, Benjamin, New York, 1970. Zbl0441.13001MR266911
- [15] M. Miyanishi – « Normal affine subalgebras of a polynomial ring », Algebraic and Topological Theories – to the memory of Dr.Takehito Miyata, Kinokuniya, Tokyo, 1985, p. 37–51. Zbl0800.14018MR1102251
- [16] D. Mumford – Geometric invariant theory, Springer Verlag, Berlin-Heidelberg, 1965. Zbl0504.14008MR214602
- [17] —, Algebraic geometry I: Complex projective varieties, Springer Verlag, Berlin-Heidelberg-New York, 1976. Zbl0356.14002MR453732
- [18] R. Rentschler – « Opérations du groupe additif sur le plan affine », 267 (1968), p. 384–387. Zbl0165.05402MR232770
- [19] K. Saito – « On a generalisation of De Rham Lemma », 26 (1976), no. 2, p. 165–170. Zbl0338.13009MR413155
- [20] I. Shafarevich – Basic algebraic geometry, vol. 1–2, Springer Verlag, Berlin-Heidelberg-New York, 1994. Zbl0362.14001MR447223
- [21] J. Winkelmann – « On free holomorphic -actions on and homogeneous Stein manifolds », 286 (1990), p. 593–612. Zbl0708.32004MR1032948
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.