Relative exactness modulo a polynomial map and algebraic ( p , + ) -actions

Philippe Bonnet

Bulletin de la Société Mathématique de France (2003)

  • Volume: 131, Issue: 3, page 373-398
  • ISSN: 0037-9484

Abstract

top
Let F = ( f 1 , ... , f q ) be a polynomial dominating map from n to  q . We study the quotient 𝒯 1 ( F ) of polynomial 1-forms that are exact along the generic fibres of F , by 1-forms of type d R + a i d f i , where R , a 1 , ... , a q are polynomials. We prove that 𝒯 1 ( F ) is always a torsion [ t 1 , ... , t q ] -module. Then we determine under which conditions on F we have 𝒯 1 ( F ) = 0 . As an application, we study the behaviour of a class of algebraic ( p , + ) -actions on n , and determine in particular when these actions are trivial.

How to cite

top

Bonnet, Philippe. "Relative exactness modulo a polynomial map and algebraic $(\mathbb {C}^p , +)$-actions." Bulletin de la Société Mathématique de France 131.3 (2003): 373-398. <http://eudml.org/doc/272374>.

@article{Bonnet2003,
abstract = {Let $F=(f_1,\ldots ,f_q)$ be a polynomial dominating map from $\mathbb \{C\}^n$ to $\mathbb \{C\}^q$. We study the quotient $\{\mathcal \{T\}\}^1(F)$ of polynomial 1-forms that are exact along the generic fibres of $F$, by 1-forms of type $\mathrm \{d\} R + \sum a_i \mathrm \{d\} f_i$, where $R,a_1,\ldots ,a_q$ are polynomials. We prove that $\{\mathcal \{T\}\}^1(F)$ is always a torsion $\mathbb \{C\}[t_1,\ldots ,t_q]$-module. Then we determine under which conditions on $F$ we have $\{\mathcal \{T\}\}^1(F)=0$. As an application, we study the behaviour of a class of algebraic $(\mathbb \{C\}^p ,+)$-actions on $\mathbb \{C\}^n$, and determine in particular when these actions are trivial.},
author = {Bonnet, Philippe},
journal = {Bulletin de la Société Mathématique de France},
keywords = {affine geometry; relative cohomology; invariant theory},
language = {eng},
number = {3},
pages = {373-398},
publisher = {Société mathématique de France},
title = {Relative exactness modulo a polynomial map and algebraic $(\mathbb \{C\}^p , +)$-actions},
url = {http://eudml.org/doc/272374},
volume = {131},
year = {2003},
}

TY - JOUR
AU - Bonnet, Philippe
TI - Relative exactness modulo a polynomial map and algebraic $(\mathbb {C}^p , +)$-actions
JO - Bulletin de la Société Mathématique de France
PY - 2003
PB - Société mathématique de France
VL - 131
IS - 3
SP - 373
EP - 398
AB - Let $F=(f_1,\ldots ,f_q)$ be a polynomial dominating map from $\mathbb {C}^n$ to $\mathbb {C}^q$. We study the quotient ${\mathcal {T}}^1(F)$ of polynomial 1-forms that are exact along the generic fibres of $F$, by 1-forms of type $\mathrm {d} R + \sum a_i \mathrm {d} f_i$, where $R,a_1,\ldots ,a_q$ are polynomials. We prove that ${\mathcal {T}}^1(F)$ is always a torsion $\mathbb {C}[t_1,\ldots ,t_q]$-module. Then we determine under which conditions on $F$ we have ${\mathcal {T}}^1(F)=0$. As an application, we study the behaviour of a class of algebraic $(\mathbb {C}^p ,+)$-actions on $\mathbb {C}^n$, and determine in particular when these actions are trivial.
LA - eng
KW - affine geometry; relative cohomology; invariant theory
UR - http://eudml.org/doc/272374
ER -

References

top
  1. [1] S. Abhyankar – Local analytic geometry, Academic Press, New York-London, 1964. Zbl0205.50401MR175897
  2. [2] M. Berthier & D. Cerveau – « Quelques calculs de cohomologie relative », 26 (1993), no. 3, p. 403–424. Zbl0805.32007MR1222279
  3. [3] P. Bonnet & A. Dimca – « Relative differential forms and complex polynomials », 124 (2000), no. 7, p. 557–571. Zbl0980.32007MR1793909
  4. [4] D. Daigle – « On some properties of locally nilpotent derivations », 114 (1997), p. 221–230. Zbl0885.13003MR1426486
  5. [5] J. Deveney – « G a -actions on 3 and 7 », 22 (1994), no. 15, p. 6295–6302. Zbl0867.13002MR1303005
  6. [6] J. Deveney & D. Finston – « On locally trivial G a -actions », Transformation Groups 2 (1997), no. 2, p. 137–145. Zbl0913.14012MR1451360
  7. [7] A. Dimca – Singularities and topology of hypersurfaces, Springer Verlag, New-York-Berlin, 1992. Zbl0753.57001MR1194180
  8. [8] A. Dimca & L. Poenaru – « On the connectivity of complex affine hypersurfaces, II », Topology39 (2000), p. 1035–1043. Zbl0983.32031MR1763962
  9. [9] L. Gavrilov – « Petrov modules and zeros of Abelians integrals », 122 (1998), no. 7, p. 571–584. Zbl0964.32022MR1668534
  10. [10] R. Hartshorne – Algebraic geometry, Springer Verlag, New York-Heidelberg, 1977. Zbl0531.14001MR463157
  11. [11] H. Kraft – « Challenging problems on affine n -space », Sém. Bourbaki 1994/1995, vol. 237, Société Mathématique de France, 1996, exp. 802. Zbl0892.14003MR1423629
  12. [12] L. Makar-Limanov – « On the hypersurface x + x 2 y + z 2 + t 3 = 0 in 4 or a 3 -like threefold which is not 3 », 96, part B (1996), p. 419–429. Zbl0896.14021MR1433698
  13. [13] B. Malgrange – « Frobenius avec singularités, 2. Le cas général », 39 (1977), p. 67–89. Zbl0375.32012MR508170
  14. [14] H. Matsumura – Commutative Algebra, Benjamin, New York, 1970. Zbl0441.13001MR266911
  15. [15] M. Miyanishi – « Normal affine subalgebras of a polynomial ring », Algebraic and Topological Theories – to the memory of Dr.Takehito Miyata, Kinokuniya, Tokyo, 1985, p. 37–51. Zbl0800.14018MR1102251
  16. [16] D. Mumford – Geometric invariant theory, Springer Verlag, Berlin-Heidelberg, 1965. Zbl0504.14008MR214602
  17. [17] —, Algebraic geometry I: Complex projective varieties, Springer Verlag, Berlin-Heidelberg-New York, 1976. Zbl0356.14002MR453732
  18. [18] R. Rentschler – « Opérations du groupe additif sur le plan affine », 267 (1968), p. 384–387. Zbl0165.05402MR232770
  19. [19] K. Saito – « On a generalisation of De Rham Lemma », 26 (1976), no. 2, p. 165–170. Zbl0338.13009MR413155
  20. [20] I. Shafarevich – Basic algebraic geometry, vol. 1–2, Springer Verlag, Berlin-Heidelberg-New York, 1994. Zbl0362.14001MR447223
  21. [21] J. Winkelmann – « On free holomorphic -actions on n and homogeneous Stein manifolds », 286 (1990), p. 593–612. Zbl0708.32004MR1032948

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.