The Dixmier-Moeglin equivalence and a Gel’fand-Kirillov problem for Poisson polynomial algebras

K. R. Goodearl; S. Launois

Bulletin de la Société Mathématique de France (2011)

  • Volume: 139, Issue: 1, page 1-39
  • ISSN: 0037-9484

Abstract

top
The structure of Poisson polynomial algebras of the type obtained as semiclassical limits of quantized coordinate rings is investigated. Sufficient conditions for a rational Poisson action of a torus on such an algebra to leave only finitely many Poisson prime ideals invariant are obtained. Combined with previous work of the first-named author, this establishes the Poisson Dixmier-Moeglin equivalence for large classes of Poisson polynomial rings, including semiclassical limits of quantum matrices, quantum symplectic and euclidean spaces, quantum symmetric and antisymmetric matrices. For a similarly large class of Poisson polynomial rings, it is proved that the quotient field of the algebra (respectively, of any Poisson prime factor ring) is a rational function field F ( x 1 , , x n ) over the base field (respectively, over an extension field of the base field) with { x i , x j } = λ i j x i x j for suitable scalars λ i j , thus establishing a quadratic Poisson version of the Gel’fand-Kirillov problem. Finally, partial solutions to the isomorphism problem for Poisson fields of the type just mentioned are obtained.

How to cite

top

Goodearl, K. R., and Launois, S.. "The Dixmier-Moeglin equivalence and a Gel’fand-Kirillov problem for Poisson polynomial algebras." Bulletin de la Société Mathématique de France 139.1 (2011): 1-39. <http://eudml.org/doc/272384>.

@article{Goodearl2011,
abstract = {The structure of Poisson polynomial algebras of the type obtained as semiclassical limits of quantized coordinate rings is investigated. Sufficient conditions for a rational Poisson action of a torus on such an algebra to leave only finitely many Poisson prime ideals invariant are obtained. Combined with previous work of the first-named author, this establishes the Poisson Dixmier-Moeglin equivalence for large classes of Poisson polynomial rings, including semiclassical limits of quantum matrices, quantum symplectic and euclidean spaces, quantum symmetric and antisymmetric matrices. For a similarly large class of Poisson polynomial rings, it is proved that the quotient field of the algebra (respectively, of any Poisson prime factor ring) is a rational function field $F(x_1,\dots ,x_n)$ over the base field (respectively, over an extension field of the base field) with $\lbrace x_i,x_j\rbrace = \lambda _\{ij\} x_ix_j$ for suitable scalars $\lambda _\{ij\}$, thus establishing a quadratic Poisson version of the Gel’fand-Kirillov problem. Finally, partial solutions to the isomorphism problem for Poisson fields of the type just mentioned are obtained.},
author = {Goodearl, K. R., Launois, S.},
journal = {Bulletin de la Société Mathématique de France},
keywords = {Poisson polynomial algebras; Dixmier-Moeglin equivalence; Gel’fand-Kirillov problem},
language = {eng},
number = {1},
pages = {1-39},
publisher = {Société mathématique de France},
title = {The Dixmier-Moeglin equivalence and a Gel’fand-Kirillov problem for Poisson polynomial algebras},
url = {http://eudml.org/doc/272384},
volume = {139},
year = {2011},
}

TY - JOUR
AU - Goodearl, K. R.
AU - Launois, S.
TI - The Dixmier-Moeglin equivalence and a Gel’fand-Kirillov problem for Poisson polynomial algebras
JO - Bulletin de la Société Mathématique de France
PY - 2011
PB - Société mathématique de France
VL - 139
IS - 1
SP - 1
EP - 39
AB - The structure of Poisson polynomial algebras of the type obtained as semiclassical limits of quantized coordinate rings is investigated. Sufficient conditions for a rational Poisson action of a torus on such an algebra to leave only finitely many Poisson prime ideals invariant are obtained. Combined with previous work of the first-named author, this establishes the Poisson Dixmier-Moeglin equivalence for large classes of Poisson polynomial rings, including semiclassical limits of quantum matrices, quantum symplectic and euclidean spaces, quantum symmetric and antisymmetric matrices. For a similarly large class of Poisson polynomial rings, it is proved that the quotient field of the algebra (respectively, of any Poisson prime factor ring) is a rational function field $F(x_1,\dots ,x_n)$ over the base field (respectively, over an extension field of the base field) with $\lbrace x_i,x_j\rbrace = \lambda _{ij} x_ix_j$ for suitable scalars $\lambda _{ij}$, thus establishing a quadratic Poisson version of the Gel’fand-Kirillov problem. Finally, partial solutions to the isomorphism problem for Poisson fields of the type just mentioned are obtained.
LA - eng
KW - Poisson polynomial algebras; Dixmier-Moeglin equivalence; Gel’fand-Kirillov problem
UR - http://eudml.org/doc/272384
ER -

References

top
  1. [1] J. Alev & F. Dumas – « Sur le corps des fractions de certaines algèbres quantiques », J. Algebra170 (1994), p. 229–265. Zbl0820.17015MR1302839
  2. [2] K. A. Brown & K. R. Goodearl – Lectures on algebraic quantum groups, Advanced Courses in Mathematics. CRM Barcelona, Birkhäuser, 2002. Zbl1027.17010MR1898492
  3. [3] K. A. Brown & I. Gordon – « Poisson orders, symplectic reflection algebras and representation theory », J. reine angew. Math. 559 (2003), p. 193–216. Zbl1025.17007MR1989650
  4. [4] G. Cauchon – « Effacement des dérivations et spectres premiers des algèbres quantiques », J. Algebra260 (2003), p. 476–518. Zbl1017.16017MR1967309
  5. [5] P. M. Cohn – Universal algebra, second éd., Mathematics and its Applications, vol. 6, D. Reidel Publishing Co., 1981. Zbl0461.08001MR620952
  6. [6] W. Dicks & J. Lewin – « A Jacobian conjecture for free associative algebras », Comm. Algebra10 (1982), p. 1285–1306. Zbl0493.16005MR660345
  7. [7] J. Dixmier – « Idéaux primitifs dans les algèbres enveloppantes », J. Algebra48 (1977), p. 96–112. Zbl0366.17007MR447360
  8. [8] K. R. Goodearl – « A Dixmier-Moeglin equivalence for Poisson algebras with torus actions », in Algebra and its applications, Contemp. Math., vol. 419, Amer. Math. Soc., 2006, p. 131–154. Zbl1147.17017MR2279114
  9. [9] K. R. Goodearl & E. S. Letzter – « Prime factor algebras of the coordinate ring of quantum matrices », Proc. Amer. Math. Soc.121 (1994), p. 1017–1025. Zbl0812.16039MR1211579
  10. [10] —, « The Dixmier-Moeglin equivalence in quantum coordinate rings and quantized Weyl algebras », Trans. Amer. Math. Soc.352 (2000), p. 1381–1403. Zbl0978.16040MR1615971
  11. [11] K. R. Goodearl & M. Yakimov – « Poisson structures on affine spaces and flag varieties. II », Trans. Amer. Math. Soc.361 (2009), p. 5753–5780. Zbl1179.53087MR2529913
  12. [12] T. J. Hodges & T. Levasseur – « Primitive ideals of 𝐂 q [ SL ( 3 ) ] », Comm. Math. Phys.156 (1993), p. 581–605. Zbl0801.17012MR1240587
  13. [13] —, « Primitive ideals of 𝐂 q [ SL ( n ) ] », J. Algebra168 (1994), p. 455–468. MR1292775
  14. [14] T. J. Hodges, T. Levasseur & M. Toro – « Algebraic structure of multiparameter quantum groups », Adv. Math.126 (1997), p. 52–92. Zbl0878.17009MR1440253
  15. [15] K. L. Horton – « The prime and primitive spectra of multiparameter quantum symplectic and Euclidean spaces », Comm. Algebra31 (2003), p. 4713–4743. Zbl1037.16002MR1998025
  16. [16] R. S. Irving & L. W. Small – « On the characterization of primitive ideals in enveloping algebras », Math. Z.173 (1980), p. 217–221. Zbl0437.17002MR592369
  17. [17] A. Joseph – « On the prime and primitive spectra of the algebra of functions on a quantum group », J. Algebra169 (1994), p. 441–511. Zbl0814.17013MR1297159
  18. [18] —, Quantum groups and their primitive ideals, Ergebnisse Math. Grenzg., vol. 29, Springer, 1995. Zbl0808.17004MR1315966
  19. [19] A. Kamita – « Quantum deformations of certain prehomogeneous vector spaces. III », Hiroshima Math. J.30 (2000), p. 79–115. Zbl0994.17005MR1753385
  20. [20] B. Kostant & N. Wallach – « Gelfand-Zeitlin theory from the perspective of classical mechanics. II », in The unity of mathematics, Progr. Math., vol. 244, Birkhäuser, 2006, p. 387–420. Zbl1099.14038MR2181811
  21. [21] F. Loose – « Symplectic algebras and Poisson algebras », Comm. Algebra21 (1993), p. 2395–2416. Zbl0799.58029MR1218503
  22. [22] C. Moeglin – « Idéaux primitifs des algèbres enveloppantes », J. Math. Pures Appl.59 (1980), p. 265–336. Zbl0454.17006MR604473
  23. [23] I. M. Musson – « Ring-theoretic properties of the coordinate rings of quantum symplectic and Euclidean space », in Ring theory (Granville, OH, 1992), World Sci. Publ., River Edge, NJ, 1993, p. 248–258. Zbl0853.16035MR1344235
  24. [24] M. Newman – Integral matrices, Academic Press, 1972, Pure and Applied Mathematics, Vol. 45. Zbl0254.15009MR340283
  25. [25] M. Noumi – « Macdonald’s symmetric polynomials as zonal spherical functions on some quantum homogeneous spaces », Adv. Math.123 (1996), p. 16–77. Zbl0874.33011MR1413836
  26. [26] S.-Q. Oh – « Catenarity in a class of iterated skew polynomial rings », Comm. Algebra25 (1997), p. 37–49. Zbl0872.16018MR1429747
  27. [27] —, « Symplectic ideals of Poisson algebras and the Poisson structure associated to quantum matrices », Comm. Algebra27 (1999), p. 2163–2180. Zbl0936.16041MR1683857
  28. [28] —, « Poisson polynomial rings », Comm. Algebra34 (2006), p. 1265–1277. Zbl1135.17012MR2220812
  29. [29] —, « Quantum and Poisson structures of multi-parameter symplectic and Euclidean spaces », J. Algebra319 (2008), p. 4485–4535. Zbl1142.17011MR2416732
  30. [30] A. N. Panov – « Skew field of rational functions on GL q ( n , K ) », Funktsional. Anal. i Prilozhen.28 (1994), p. 75–77. Zbl0831.16022MR1283261
  31. [31] L. Richard – « Sur les endomorphismes des tores quantiques », Comm. Algebra30 (2002), p. 5283–5306. Zbl1052.16026MR1945090
  32. [32] E. Strickland – « Classical invariant theory for the quantum symplectic group », Adv. Math.123 (1996), p. 78–90. Zbl0928.17016MR1413837
  33. [33] P. Tauvel & R. W. T. Yu – Lie algebras and algebraic groups, Springer Monographs in Math., Springer, 2005. Zbl1068.17001MR2146652
  34. [34] —, « Algèbres de Poisson et algèbres de Lie résolubles », Comm. Algebra38 (2010), p. 2317–2353. Zbl1246.17028
  35. [35] M. Vancliff – « Primitive and Poisson spectra of twists of polynomial rings », Algebr. Represent. Theory2 (1999), p. 269–285. Zbl0939.16018MR1715749
  36. [36] M. Vergne – « La structure de Poisson sur l’algèbre symétrique d’une algèbre de Lie nilpotente », Bull. Soc. Math. France100 (1972), p. 301–335. Zbl0256.17002MR379752

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.