The Dixmier-Moeglin equivalence and a Gel’fand-Kirillov problem for Poisson polynomial algebras
Bulletin de la Société Mathématique de France (2011)
- Volume: 139, Issue: 1, page 1-39
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topGoodearl, K. R., and Launois, S.. "The Dixmier-Moeglin equivalence and a Gel’fand-Kirillov problem for Poisson polynomial algebras." Bulletin de la Société Mathématique de France 139.1 (2011): 1-39. <http://eudml.org/doc/272384>.
@article{Goodearl2011,
abstract = {The structure of Poisson polynomial algebras of the type obtained as semiclassical limits of quantized coordinate rings is investigated. Sufficient conditions for a rational Poisson action of a torus on such an algebra to leave only finitely many Poisson prime ideals invariant are obtained. Combined with previous work of the first-named author, this establishes the Poisson Dixmier-Moeglin equivalence for large classes of Poisson polynomial rings, including semiclassical limits of quantum matrices, quantum symplectic and euclidean spaces, quantum symmetric and antisymmetric matrices. For a similarly large class of Poisson polynomial rings, it is proved that the quotient field of the algebra (respectively, of any Poisson prime factor ring) is a rational function field $F(x_1,\dots ,x_n)$ over the base field (respectively, over an extension field of the base field) with $\lbrace x_i,x_j\rbrace = \lambda _\{ij\} x_ix_j$ for suitable scalars $\lambda _\{ij\}$, thus establishing a quadratic Poisson version of the Gel’fand-Kirillov problem. Finally, partial solutions to the isomorphism problem for Poisson fields of the type just mentioned are obtained.},
author = {Goodearl, K. R., Launois, S.},
journal = {Bulletin de la Société Mathématique de France},
keywords = {Poisson polynomial algebras; Dixmier-Moeglin equivalence; Gel’fand-Kirillov problem},
language = {eng},
number = {1},
pages = {1-39},
publisher = {Société mathématique de France},
title = {The Dixmier-Moeglin equivalence and a Gel’fand-Kirillov problem for Poisson polynomial algebras},
url = {http://eudml.org/doc/272384},
volume = {139},
year = {2011},
}
TY - JOUR
AU - Goodearl, K. R.
AU - Launois, S.
TI - The Dixmier-Moeglin equivalence and a Gel’fand-Kirillov problem for Poisson polynomial algebras
JO - Bulletin de la Société Mathématique de France
PY - 2011
PB - Société mathématique de France
VL - 139
IS - 1
SP - 1
EP - 39
AB - The structure of Poisson polynomial algebras of the type obtained as semiclassical limits of quantized coordinate rings is investigated. Sufficient conditions for a rational Poisson action of a torus on such an algebra to leave only finitely many Poisson prime ideals invariant are obtained. Combined with previous work of the first-named author, this establishes the Poisson Dixmier-Moeglin equivalence for large classes of Poisson polynomial rings, including semiclassical limits of quantum matrices, quantum symplectic and euclidean spaces, quantum symmetric and antisymmetric matrices. For a similarly large class of Poisson polynomial rings, it is proved that the quotient field of the algebra (respectively, of any Poisson prime factor ring) is a rational function field $F(x_1,\dots ,x_n)$ over the base field (respectively, over an extension field of the base field) with $\lbrace x_i,x_j\rbrace = \lambda _{ij} x_ix_j$ for suitable scalars $\lambda _{ij}$, thus establishing a quadratic Poisson version of the Gel’fand-Kirillov problem. Finally, partial solutions to the isomorphism problem for Poisson fields of the type just mentioned are obtained.
LA - eng
KW - Poisson polynomial algebras; Dixmier-Moeglin equivalence; Gel’fand-Kirillov problem
UR - http://eudml.org/doc/272384
ER -
References
top- [1] J. Alev & F. Dumas – « Sur le corps des fractions de certaines algèbres quantiques », J. Algebra170 (1994), p. 229–265. Zbl0820.17015MR1302839
- [2] K. A. Brown & K. R. Goodearl – Lectures on algebraic quantum groups, Advanced Courses in Mathematics. CRM Barcelona, Birkhäuser, 2002. Zbl1027.17010MR1898492
- [3] K. A. Brown & I. Gordon – « Poisson orders, symplectic reflection algebras and representation theory », J. reine angew. Math. 559 (2003), p. 193–216. Zbl1025.17007MR1989650
- [4] G. Cauchon – « Effacement des dérivations et spectres premiers des algèbres quantiques », J. Algebra260 (2003), p. 476–518. Zbl1017.16017MR1967309
- [5] P. M. Cohn – Universal algebra, second éd., Mathematics and its Applications, vol. 6, D. Reidel Publishing Co., 1981. Zbl0461.08001MR620952
- [6] W. Dicks & J. Lewin – « A Jacobian conjecture for free associative algebras », Comm. Algebra10 (1982), p. 1285–1306. Zbl0493.16005MR660345
- [7] J. Dixmier – « Idéaux primitifs dans les algèbres enveloppantes », J. Algebra48 (1977), p. 96–112. Zbl0366.17007MR447360
- [8] K. R. Goodearl – « A Dixmier-Moeglin equivalence for Poisson algebras with torus actions », in Algebra and its applications, Contemp. Math., vol. 419, Amer. Math. Soc., 2006, p. 131–154. Zbl1147.17017MR2279114
- [9] K. R. Goodearl & E. S. Letzter – « Prime factor algebras of the coordinate ring of quantum matrices », Proc. Amer. Math. Soc.121 (1994), p. 1017–1025. Zbl0812.16039MR1211579
- [10] —, « The Dixmier-Moeglin equivalence in quantum coordinate rings and quantized Weyl algebras », Trans. Amer. Math. Soc.352 (2000), p. 1381–1403. Zbl0978.16040MR1615971
- [11] K. R. Goodearl & M. Yakimov – « Poisson structures on affine spaces and flag varieties. II », Trans. Amer. Math. Soc.361 (2009), p. 5753–5780. Zbl1179.53087MR2529913
- [12] T. J. Hodges & T. Levasseur – « Primitive ideals of », Comm. Math. Phys.156 (1993), p. 581–605. Zbl0801.17012MR1240587
- [13] —, « Primitive ideals of », J. Algebra168 (1994), p. 455–468. MR1292775
- [14] T. J. Hodges, T. Levasseur & M. Toro – « Algebraic structure of multiparameter quantum groups », Adv. Math.126 (1997), p. 52–92. Zbl0878.17009MR1440253
- [15] K. L. Horton – « The prime and primitive spectra of multiparameter quantum symplectic and Euclidean spaces », Comm. Algebra31 (2003), p. 4713–4743. Zbl1037.16002MR1998025
- [16] R. S. Irving & L. W. Small – « On the characterization of primitive ideals in enveloping algebras », Math. Z.173 (1980), p. 217–221. Zbl0437.17002MR592369
- [17] A. Joseph – « On the prime and primitive spectra of the algebra of functions on a quantum group », J. Algebra169 (1994), p. 441–511. Zbl0814.17013MR1297159
- [18] —, Quantum groups and their primitive ideals, Ergebnisse Math. Grenzg., vol. 29, Springer, 1995. Zbl0808.17004MR1315966
- [19] A. Kamita – « Quantum deformations of certain prehomogeneous vector spaces. III », Hiroshima Math. J.30 (2000), p. 79–115. Zbl0994.17005MR1753385
- [20] B. Kostant & N. Wallach – « Gelfand-Zeitlin theory from the perspective of classical mechanics. II », in The unity of mathematics, Progr. Math., vol. 244, Birkhäuser, 2006, p. 387–420. Zbl1099.14038MR2181811
- [21] F. Loose – « Symplectic algebras and Poisson algebras », Comm. Algebra21 (1993), p. 2395–2416. Zbl0799.58029MR1218503
- [22] C. Moeglin – « Idéaux primitifs des algèbres enveloppantes », J. Math. Pures Appl.59 (1980), p. 265–336. Zbl0454.17006MR604473
- [23] I. M. Musson – « Ring-theoretic properties of the coordinate rings of quantum symplectic and Euclidean space », in Ring theory (Granville, OH, 1992), World Sci. Publ., River Edge, NJ, 1993, p. 248–258. Zbl0853.16035MR1344235
- [24] M. Newman – Integral matrices, Academic Press, 1972, Pure and Applied Mathematics, Vol. 45. Zbl0254.15009MR340283
- [25] M. Noumi – « Macdonald’s symmetric polynomials as zonal spherical functions on some quantum homogeneous spaces », Adv. Math.123 (1996), p. 16–77. Zbl0874.33011MR1413836
- [26] S.-Q. Oh – « Catenarity in a class of iterated skew polynomial rings », Comm. Algebra25 (1997), p. 37–49. Zbl0872.16018MR1429747
- [27] —, « Symplectic ideals of Poisson algebras and the Poisson structure associated to quantum matrices », Comm. Algebra27 (1999), p. 2163–2180. Zbl0936.16041MR1683857
- [28] —, « Poisson polynomial rings », Comm. Algebra34 (2006), p. 1265–1277. Zbl1135.17012MR2220812
- [29] —, « Quantum and Poisson structures of multi-parameter symplectic and Euclidean spaces », J. Algebra319 (2008), p. 4485–4535. Zbl1142.17011MR2416732
- [30] A. N. Panov – « Skew field of rational functions on », Funktsional. Anal. i Prilozhen.28 (1994), p. 75–77. Zbl0831.16022MR1283261
- [31] L. Richard – « Sur les endomorphismes des tores quantiques », Comm. Algebra30 (2002), p. 5283–5306. Zbl1052.16026MR1945090
- [32] E. Strickland – « Classical invariant theory for the quantum symplectic group », Adv. Math.123 (1996), p. 78–90. Zbl0928.17016MR1413837
- [33] P. Tauvel & R. W. T. Yu – Lie algebras and algebraic groups, Springer Monographs in Math., Springer, 2005. Zbl1068.17001MR2146652
- [34] —, « Algèbres de Poisson et algèbres de Lie résolubles », Comm. Algebra38 (2010), p. 2317–2353. Zbl1246.17028
- [35] M. Vancliff – « Primitive and Poisson spectra of twists of polynomial rings », Algebr. Represent. Theory2 (1999), p. 269–285. Zbl0939.16018MR1715749
- [36] M. Vergne – « La structure de Poisson sur l’algèbre symétrique d’une algèbre de Lie nilpotente », Bull. Soc. Math. France100 (1972), p. 301–335. Zbl0256.17002MR379752
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.