Pseudo-spectrum for a class of semi-classical operators
Bulletin de la Société Mathématique de France (2008)
- Volume: 136, Issue: 3, page 329-372
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] J.-M. Bony – « Sur l’inégalité de Fefferman-Phong », in Seminaire: Équations aux Dérivées Partielles, 1998–1999, Sémin. Équ. Dériv. Partielles, exposé no III, École Polytech., 1999, p. 16. Zbl1086.35529MR1721321
- [2] A. Boulkhemair – « estimates for Weyl quantization », J. Funct. Anal.165 (1999), p. 173–204. Zbl0934.35217MR1696697
- [3] E. B. Davies – « Pseudo-spectra, the harmonic oscillator and complex resonances », R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci.455 (1999), p. 585–599. Zbl0931.70016MR1700903
- [4] —, « Semi-classical states for non-self-adjoint Schrödinger operators », Comm. Math. Phys.200 (1999), p. 35–41. Zbl0921.47060MR1671904
- [5] N. Dencker, J. Sjöstrand & M. Zworski – « Pseudospectra of semiclassical (pseudo-) differential operators », Comm. Pure Appl. Math.57 (2004), p. 384–415. Zbl1054.35035MR2020109
- [6] L. Hörmander – « A class of hypoelliptic pseudodifferential operators with double characteristics », Math. Ann.217 (1975), p. 165–188. Zbl0306.35032MR377603
- [7] —, The analysis of linear partial differential operators, Springer, 1983-1985. Zbl1115.35005
- [8] N. Lerner – « Energy methods via coherent states and advanced pseudo-differential calculus », in Multidimensional complex analysis and partial differential equations (São Carlos, 1995), Contemp. Math., vol. 205, Amer. Math. Soc., 1997, p. 177–201. Zbl0885.35152MR1447224
- [9] —, « The Wick calculus of pseudo-differential operators and some of its applications », Cubo Mat. Educ.5 (2003), p. 213–236. Zbl05508173MR1957713
- [10] K. Pravda-Starov – « A complete study of the pseudo-spectrum for the rotated harmonic oscillator », J. London Math. Soc. (2) 73 (2006), p. 745–761. Zbl1106.34060MR2241978
- [11] L. N. Trefethen – « Pseudospectra of linear operators », SIAM Rev.39 (1997), p. 383–406. Zbl0896.15006MR1469941
- [12] M. Zworski – « Numerical linear algebra and solvability of partial differential equations », Comm. Math. Phys.229 (2002), p. 293–307. Zbl1021.35077MR1923176