Polynomial functors and nonlinear Mackey functors

Hans-Joachim Baues; Winfried Dreckmann; Vincent Franjou; Teimuraz Pirashvili

Bulletin de la Société Mathématique de France (2001)

  • Volume: 129, Issue: 2, page 237-257
  • ISSN: 0037-9484

Abstract

top
Polynomial functors from free abelian groups to abelian groups are described explicitely in the form of diagrams of abelian groups, that are maps between the cross-effects of the polynomial functor which satisfy a list of relations. The key is to use an appropriate notion of Mackey functor from the category of finite sets and surjections.

How to cite

top

Baues, Hans-Joachim, et al. "Foncteurs polynomiaux et foncteurs de Mackey non linéaires." Bulletin de la Société Mathématique de France 129.2 (2001): 237-257. <http://eudml.org/doc/272400>.

@article{Baues2001,
abstract = {On décrit les foncteurs polynomiaux, des groupes abéliens libres vers les groupes abéliens, comme des diagrammes de groupes abéliens dont on explicite les relations.},
author = {Baues, Hans-Joachim, Dreckmann, Winfried, Franjou, Vincent, Pirashvili, Teimuraz},
journal = {Bulletin de la Société Mathématique de France},
keywords = {diagram of abelian group; Mackey functor; polynomial functor},
language = {fre},
number = {2},
pages = {237-257},
publisher = {Société mathématique de France},
title = {Foncteurs polynomiaux et foncteurs de Mackey non linéaires},
url = {http://eudml.org/doc/272400},
volume = {129},
year = {2001},
}

TY - JOUR
AU - Baues, Hans-Joachim
AU - Dreckmann, Winfried
AU - Franjou, Vincent
AU - Pirashvili, Teimuraz
TI - Foncteurs polynomiaux et foncteurs de Mackey non linéaires
JO - Bulletin de la Société Mathématique de France
PY - 2001
PB - Société mathématique de France
VL - 129
IS - 2
SP - 237
EP - 257
AB - On décrit les foncteurs polynomiaux, des groupes abéliens libres vers les groupes abéliens, comme des diagrammes de groupes abéliens dont on explicite les relations.
LA - fre
KW - diagram of abelian group; Mackey functor; polynomial functor
UR - http://eudml.org/doc/272400
ER -

References

top
  1. [1] H. Bass – Algebraic K -theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968. Zbl0174.30302MR249491
  2. [2] H. J. Baues – « Quadratic functors and metastable homotopy », J. Pure Appl. Algebra 91 (1994), no. 1-3, p. 49–107. Zbl0790.55014MR1255923
  3. [3] J. Bénabou – « Introduction to bicategories », Reports of the Midwest Category Seminar, Springer, Berlin, 1967, p. 1–77. MR220789
  4. [4] W. Dreckmann – « A sketch for polynomial functors », Actes des journées mathématiques Catégories, algèbres, esquisses et néoesquisses, Caen, 1994, p. 91–95. 
  5. [5] A. W. M. Dress – « Contributions to the theory of induced representations », Algebraic K -theory, II : “Classical” algebraic K -theory and connections with arithmetic (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), Springer, Berlin, 1973, p. 183–240. Lecture Notes in Math., Vol. 342. Zbl0331.18016MR384917
  6. [6] S. Eilenberg & S. Mac Lane – « On the groups H ( Π , n ) . II. Methods of computation », Ann. of Math. (2) 60 (1954), p. 49–139. Zbl0055.41704MR65162
  7. [7] M. Jibladze & T. Pirashvili – « Cohomology of algebraic theories », J. Algebra 137 (1991), no. 2, p. 253–296. Zbl0724.18005MR1094244
  8. [8] S. Joukhovitski – « K -theory of the Weil transfer functor », K -Theory 20 (2000), no. 1, p. 1–21, Special issues dedicated to Daniel Quillen on the occasion of his sixtieth birthday, Part I. Zbl0969.19003MR1798429
  9. [9] H. Linder – « A remark on mackey-functors », Manuscripta Math., vol. 3, p. 273–278, Manuscripta Math., 1976. Zbl0321.18002MR401864
  10. [10] H. Müller – « Manuscripta algebraische abbildungen », Thèse, Universität Bielefeld, 1971, Dissertation. 
  11. [11] T. Pirashvili – « Dold-Kan type theorem for Γ -groups », Math. Ann. 318 (2000), no. 2, p. 277–298. Zbl0963.18006MR1795563
  12. [12] J. Thévenaz & P. Webb – « The structure of Mackey functors », Trans. Amer. Math. Soc. 347 (1995), no. 6, p. 1865–1961. Zbl0834.20011MR1261590

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.