Positivity of quadratic base change L -functions

Hervé Jacquet; Chen Nan

Bulletin de la Société Mathématique de France (2001)

  • Volume: 129, Issue: 1, page 33-90
  • ISSN: 0037-9484

Abstract

top
We show that certain quadratic base change L -functions for Gl ( 2 ) are non-negative at their center of symmetry.

How to cite

top

Jacquet, Hervé, and Nan, Chen. "Positivity of quadratic base change $L$-functions." Bulletin de la Société Mathématique de France 129.1 (2001): 33-90. <http://eudml.org/doc/272403>.

@article{Jacquet2001,
abstract = {We show that certain quadratic base change $L$-functions for $\mathrm \{Gl\}(2)$ are non-negative at their center of symmetry.},
author = {Jacquet, Hervé, Nan, Chen},
journal = {Bulletin de la Société Mathématique de France},
keywords = {$L$-functions; positivity; quadratic base change},
language = {eng},
number = {1},
pages = {33-90},
publisher = {Société mathématique de France},
title = {Positivity of quadratic base change $L$-functions},
url = {http://eudml.org/doc/272403},
volume = {129},
year = {2001},
}

TY - JOUR
AU - Jacquet, Hervé
AU - Nan, Chen
TI - Positivity of quadratic base change $L$-functions
JO - Bulletin de la Société Mathématique de France
PY - 2001
PB - Société mathématique de France
VL - 129
IS - 1
SP - 33
EP - 90
AB - We show that certain quadratic base change $L$-functions for $\mathrm {Gl}(2)$ are non-negative at their center of symmetry.
LA - eng
KW - $L$-functions; positivity; quadratic base change
UR - http://eudml.org/doc/272403
ER -

References

top
  1. [1] Asai ( T.) – On certain Dirichlet series associated with Hilbert modular forms, Math. Ann., t.226 (1977), pp.81–94. Zbl0326.10024MR429751
  2. [2] Arthur ( J.) – A trace formula for reductive groups I: Terms associated to classes in G ( ) , Duke Math. J., t.45 (1978), 911-952. Zbl0499.10032MR518111
  3. [3] Bernstein ( J.) – P-invariant distributions of Gl ( n ) and the classification of unitary representations of Gl ( n ) (non Archimedean case), in Lie Group Representations II, College Park, Md., 1982/1983, Lecture Notes in Math. 1041, Springer-Verlag, 1984. Zbl0541.22009MR748505
  4. [4] Bump ( D.), Friedberg ( S.), Hoffstein ( J.) – Eisenstein series on the metaplectic group and non-vanishing theorems for automorphic L -functions, Ann. of Math., t.131 (1990), pp.53–127. Zbl0699.10039MR1038358
  5. [5] Baruch ( E.M.), Mao ( Z.) – Central critical value of automorphic L -functions, preprint Zbl1191.11012
  6. [6] Casselman ( W.), Hecht ( H.), Miličic ( D.) – Bruhat filtrations and Whittaker vectors for real groups, preprint. Zbl0959.22010
  7. [7] Dixmier ( J.), Malliavin ( P.) – Factorizations de fonctions et vecteurs indéfiniment différentiables, Bull. Soc. Math. France, t.102 (1978), pp.305–330. Zbl0392.43013MR517765
  8. [8] Flicker ( Y.) – Twisted tensors and Euler products, Bull. Soc. Math. France, t.116 (1988), pp.295–313. Zbl0674.10026MR984899
  9. [9] Flicker ( Y.) – On distinguished representations, J. reine angew Math., t.418 (1991), pp.139–172. Zbl0725.11026MR1111204
  10. [10] Flicker ( Y.) – A Fourier summation formula for the symmetric space Gl ( n ) / Gl ( n - 1 ) , Comp. Math., t.88 (1992), pp.39–117. Zbl0789.11035MR1234976
  11. [11] Flicker ( Y.) – Orbital Integrals on symmetric spaces and spherical characters, J. Algebra, t.184 (1996), pp.705–754. Zbl0856.22022MR1409236
  12. [12] Flicker ( Y.), Zinoniev ( D.) – On the poles of twisted L -functions, Proc. Japan Acad. Sci., t.71 (1995), pp.114–116. Zbl0983.11023MR1344660
  13. [13] Friedberg ( S.), Hoffstein ( J.) – Non vanishing theorem for automorphic L -functions for Gl ( 2 ) , Ann. of Math., t.142 (1995), pp.385–423. Zbl0847.11026
  14. [14] Guo ( J.) – On the positivity of the central critical value of automorphic L -functions for Gl ( 2 ) , Duke Math. J., t.83 (1996), pp.157–189. Zbl0861.11032MR1388847
  15. [15] Guo ( J.) – On a generalization of a result of Waldspurger, Canad. J. Math., t.48 (1996), pp.105–142. Zbl0852.11026MR1382478
  16. [16] Gross ( B.) – Heights and the special values of L series, in Number Theory (Montreal, Que., 1985), 115–187, CMS Conf. Proc. 7, Americ. Math. Soc., Providence, RI, 1987. Zbl0623.10019MR894322
  17. [17] Gross ( B.), Zagier ( D.) – Heegner points and derivatives of automorphic L -functions for Gl ( 2 ) , Invent. Math., t.84 (1986), pp.225–320. Zbl0608.14019MR833192
  18. [18] Hakim ( J.) – Distinguished p -adic representations, Duke Math. J., t.62 (1991), pp.1–22. Zbl0724.22016MR1104321
  19. [19] Harder ( G.), Langlands ( R.P.), Rapoport ( M.) – Algebraische Zyklen auf Hilbert–Blumenthal-Flächen, J. reine angew. Math., t.366 (1986), pp.53–120. Zbl0575.14004MR833013
  20. [20] Jacquet ( H.) – Sur un résultat de Waldspurger, Ann. Scient. École Norm. Sup., t.19 (1986), pp.185–229. Zbl0605.10015MR868299
  21. [21] Jacquet ( H.) – Sur un résultat de Waldspurger II, Comp. Math., t.63 (1987), pp.315–389. Zbl0633.10029MR909385
  22. [22] Jacquet ( H.), Lai ( K.) – A relative trace formula, Comp. Math., t.54 (1995), pp.243–310. Zbl0587.12006MR783512
  23. [23] Jacquet ( H.), Lai ( K.), Rallis ( S.)A trace formula for symmetric spaces, Duke Math. J., t.70 (1993), pp.305–371. Zbl0795.22008MR1219816
  24. [24] Jacquet ( H.), Lapid ( E.), Rogawski ( J.) – Periods of automorphic forms, J. Amer. Math. Soc., t.12 (1999), pp.173–240. Zbl1012.11044MR1625060
  25. [25] Jacquet ( H.), Ye ( Y.) – Une remarque sur le changement de base quadratique, C. R. Acad. Sci. Paris Sér. I Math., t.311 (1990), pp.671–676. Zbl0715.11026MR1081622
  26. [26] Khonen ( W.) – Fourier coefficients of modular forms of half integral weight, Math. Ann., t.271 (1985), pp.237–268. Zbl0542.10018MR783554
  27. [27] Kamal Khuri-Makdsi – On the Fourier coefficients of non holomorphic Hilbert modular forms of half integral weight, Duke Math. J., t.84 (1996), pp.399–452. Zbl0859.11031MR1404335
  28. [28] Katok ( S.), Sarnak ( P.) – Heegner points, cycles, and Maass forms, Israel J. Math., t.84 (1993), pp.193–227. Zbl0787.11016MR1244668
  29. [29] Kohnen ( W.), Zagier ( D.) – Values of L -series of modular forms at the center of the critical strip, Invent. Math., t.64 (1981), pp.175–198. Zbl0468.10015MR629468
  30. [30] Rohrlich ( D.) – Non vanishing of L -functions for Gl ( 2 ) , Invent. Math., t.97 (1989), pp.381–403. Zbl0677.10020
  31. [31] Rader ( C.), Rallis ( S.) – Spherical characters on p-adic symmetric spaces, Amer. J. Math., t.118 (1996), pp.91–178. Zbl0861.22011MR1375304
  32. [32] Shimura ( S.) – On Fourier coefficients of Hilbert modular forms of half-integral weight, Duke Math. J., t.71 (1993), pp.501–557. Zbl0802.11017MR1233447
  33. [33] Waldspurger ( J.-L.) – Corespondances de Shimura, J. Math. Pures Appl., t.59 (1980), pp.1–132. Zbl0412.10019MR577010
  34. [34] Waldspurger ( J.-L.) – Sur les coefficients de Fourier des formes modulaires de poids demi-entier, J. Math. Pures Appl., t.60 (1981), pp.375–484. Zbl0431.10015MR646366
  35. [35] Waldspurger ( J.-L.) – Quelques propriétés arithmétiques de certaines formes automorphes sur Gl ( 2 ) , Comp. Math., t.54 (1985), pp.121–171. Zbl0567.10022MR783510
  36. [36] Waldspurger ( J.-L.) – Sur les valeurs de fonctions L -automorphes en leur centre de symétrie, Comp. Math., t.54 (1985), pp.173–242. Zbl0567.10021MR783511
  37. [37] Waldspurger ( J.-L.) – Correspondances de Shimura et quaternions, Forum Math., t.3 (1991), pp.219–307. Zbl0724.11026MR1103429
  38. [38] Wallach ( N.) – Real Reductive Groups II, Pure and Applied Mathematics, Vol 132-II (1192), Academic Press. Zbl0785.22001
  39. [39] Yang ( T.) – Theta liftings and Hecke L -functions, J. reine angew. Math., t.485 (1997), pp.25–53. Zbl0867.11037MR1442188

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.