A relative trace formula

H. Jacquet; K. F. Lai

Compositio Mathematica (1985)

  • Volume: 54, Issue: 2, page 243-310
  • ISSN: 0010-437X

How to cite

top

Jacquet, H., and Lai, K. F.. "A relative trace formula." Compositio Mathematica 54.2 (1985): 243-310. <http://eudml.org/doc/89703>.

@article{Jacquet1985,
author = {Jacquet, H., Lai, K. F.},
journal = {Compositio Mathematica},
keywords = {trace formula; distinguished representation; Hasse-Weil zeta function; irreducible automorphic representation; cuspidal representation},
language = {eng},
number = {2},
pages = {243-310},
publisher = {Martinus Nijhoff Publishers},
title = {A relative trace formula},
url = {http://eudml.org/doc/89703},
volume = {54},
year = {1985},
}

TY - JOUR
AU - Jacquet, H.
AU - Lai, K. F.
TI - A relative trace formula
JO - Compositio Mathematica
PY - 1985
PB - Martinus Nijhoff Publishers
VL - 54
IS - 2
SP - 243
EP - 310
LA - eng
KW - trace formula; distinguished representation; Hasse-Weil zeta function; irreducible automorphic representation; cuspidal representation
UR - http://eudml.org/doc/89703
ER -

References

top
  1. [JA] J. Arthur: The Selberg trace formula for groups of F-rank one, Annals of Math.100(2) pp 326-385. Zbl0257.20033MR360470
  2. [TA] T. Asai: On certain Dirichlet series associated with Hilbert modular forms and Rankin's method, Math. Ann.226 (1977) 81-94. Zbl0326.10024MR429751
  3. [WC] W. Casselman: The Hasse-Weil zeta function of some moduli varieties of dimension greater than one. In Proceeding of Symposia in Pure Mathematics, Vol. 33 (1979), part 2, pp 141-163. Zbl0415.14011MR546615
  4. [HLR] Harder and Langlands: Rappoport Algebraische Zyklen auf Hilbert-Blumenthal Flacken, to appear. Zbl0575.14004
  5. [JL] H. Jacquet and R. Langlands: Automorphic forms on GL(2), Springer Verlag, Lecture Notes in Mathematics No. 114 (1970). Zbl0236.12010MR401654
  6. [RL] R. Langlands: Base Change for GL(2), Annals of Math. Studies, No 96, Princeton University Press. Zbl0444.22007MR574808
  7. [FS] F. Shahidi: Local coefficients and normalization of intertwinning operators for GL(n), Comp. Math.48 (1983) 271-295. Zbl0506.22020MR700741

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.