Free decay of solutions to wave equations on a curved background

Serge Alinhac

Bulletin de la Société Mathématique de France (2005)

  • Volume: 133, Issue: 3, page 419-458
  • ISSN: 0037-9484

Abstract

top
We investigate for which metric g (close to the standard metric g 0 ) the solutions of the corresponding d’Alembertian behave like free solutions of the standard wave equation. We give rather weak (i.e., non integrable) decay conditions on g - g 0 ; in particular, g - g 0 decays like t - 1 2 - ε along wave cones.

How to cite

top

Alinhac, Serge. "Free decay of solutions to wave equations on a curved background." Bulletin de la Société Mathématique de France 133.3 (2005): 419-458. <http://eudml.org/doc/272408>.

@article{Alinhac2005,
abstract = {We investigate for which metric $g$ (close to the standard metric $g_0$) the solutions of the corresponding d’Alembertian behave like free solutions of the standard wave equation. We give rather weak (i.e., non integrable) decay conditions on $g-g_0$; in particular, $g-g_0$ decays like $t^\{-\frac\{1\}\{2\}-\varepsilon \}$ along wave cones.},
author = {Alinhac, Serge},
journal = {Bulletin de la Société Mathématique de France},
keywords = {energy inequality; wave equation; decay of solutions},
language = {eng},
number = {3},
pages = {419-458},
publisher = {Société mathématique de France},
title = {Free decay of solutions to wave equations on a curved background},
url = {http://eudml.org/doc/272408},
volume = {133},
year = {2005},
}

TY - JOUR
AU - Alinhac, Serge
TI - Free decay of solutions to wave equations on a curved background
JO - Bulletin de la Société Mathématique de France
PY - 2005
PB - Société mathématique de France
VL - 133
IS - 3
SP - 419
EP - 458
AB - We investigate for which metric $g$ (close to the standard metric $g_0$) the solutions of the corresponding d’Alembertian behave like free solutions of the standard wave equation. We give rather weak (i.e., non integrable) decay conditions on $g-g_0$; in particular, $g-g_0$ decays like $t^{-\frac{1}{2}-\varepsilon }$ along wave cones.
LA - eng
KW - energy inequality; wave equation; decay of solutions
UR - http://eudml.org/doc/272408
ER -

References

top
  1. [1] S. Alinhac – « An example of blowup at infinity for a quasilinear wave equation », Autour de l’analyse microlocale (G. Lebeau, éd.), vol. 284, Société Mathématique de France, 2003, p. 1–91. Zbl1053.35097MR2003417
  2. [2] —, « Remarks on energy inequalities for wave and Maxwell equations on a curved background », 329 (2004), p. 707–722. Zbl1065.35075MR2076683
  3. [3] D. Christodoulou & S. Klainerman – « Asymptotic properties of linear field equations in Minkowski space », Comm. Pure Appl. Math. XLIII (1990), p. 137–199. Zbl0715.35076MR1038141
  4. [4] —, The global nonlinear stability of the Minkowski space, Princeton Mathematical Series, vol. 41, Princeton University Press, Princeton, NJ, 1993. Zbl0827.53055MR1316662
  5. [5] L. Hörmander – Lectures on nonlinear hyperbolic differential equations, Mathématiques & Applications, vol. 26, Springer Verlag, 1997. Zbl0881.35001MR1466700
  6. [6] M. Keel, H. Smith & C. Sogge – « Almost global existence for some semilinear wave equations », J. Anal. Math. LXXXVII (2002), p. 265–280. Zbl1031.35107MR1945285
  7. [7] S. Klainerman – « A commuting vectorfields approach to strichartz type inequalities and applications to quasilinear wave equations », Int. Math. Res. Notices5 (2001), p. 221–274. Zbl0993.35022MR1820023
  8. [8] S. Klainerman & F. Nicolò – The evolution problem in general relativity, Progress in Math. Physics, vol. 25, Birkhäuser, 2003. Zbl1010.83004MR1946854
  9. [9] S. Klainerman & I. Rodnianski – « Improved local well posedness for quasilinear wave equations in dimension three », 117 (2003), no. 1, p. 1–124. Zbl1031.35091MR1962783
  10. [10] S. Klainerman & T. Sideris – « On almost global existence for nonrelativistic wave equations in 3D », Comm. Pure Appl. Math. XLIX (1996), p. 307–321. Zbl0867.35064MR1374174

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.